Do you want to publish a course? Click here

Alloying V in MnBi$_2$Te$_4$ for Robust Ferromagnetic Coupling and Quantum Anomalous Hall Effect

294   0   0.0 ( 0 )
 Added by Yusheng Hou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The intrinsic antiferromagnetic (AFM) interlayer coupling in two-dimensional magnetic topological insulator MnBi$_2$Te$_4$ places a restriction on realizing stable quantum anomalous Hall effect (QAHE) [Y. Deng et al., Science 367, 895 (2020)]. Through density functional theory calculations, we demonstrate the possibility of tuning the AFM coupling to the ferromagnetic coupling in MnBi$_2$Te$_4$ films by alloying about 50% V with Mn. As a result, QAHE can be achieved without alternation with the even or odd septuple layers. This provides a practical strategy to get robust QAHE in ultrathin MnBi$_2$Te$_4$ films, rendering them attractive for technological innovations.



rate research

Read More

Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetically-doped topological insulators or intrinsic magnetic topological insulator MnBi$_2$Te$_4$ by applying an external magnetic field. However, either the low observation temperature or the unexpected external magnetic field (tuning all MnBi$_2$Te$_4$ layers to be ferromagnetic) still hinders further application of QAHE. Here, we theoretically demonstrate that proper stacking of MnBi$_2$Te$_4$ and Sb$_2$Te$_3$ layers is able to produce intrinsically ferromagnetic van der Waals heterostructures to realize the high-temperature QAHE. We find that interlayer ferromagnetic transition can happen at $T_{rm C}=42~rm K$ when a five-quintuple-layer Sb$_2$Te$_3$ topological insulator is inserted into two septuple-layer MnBi$_2$Te$_4$ with interlayer antiferromagnetic coupling. Band structure and topological property calculations show that MnBi$_2$Te$_4$/Sb$_2$Te$_3$/MnBi$_2$Te$_4$ heterostructure exhibits a topologically nontrivial band gap around 26 meV, that hosts a QAHE with a Chern number of $mathcal{C}=1$. In addition, our proposed materials system should be considered as an ideal platform to explore high-temperature QAHE due to the fact of natural charge-compensation, originating from the intrinsic n-type defects in MnBi$_2$Te$_4$ and p-type defects in Sb$_2$Te$_3$.
The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides an ideal platform for exploring exotic topological quantum phenomena. Recently, the Chern insulator and axion insulator phases have been realized in few-layer MnBi2Te4 devices at low magnetic field regime. However, the fate of MnBi2Te4 in high magnetic field has never been explored in experiment. In this work, we report transport studies of exfoliated MnBi2Te4 flakes in pulsed magnetic fields up to 61.5 T. In the high-field limit, the Chern insulator phase with Chern number C = -1 evolves into a robust zero Hall resistance plateau state. Nonlocal transport measurements and theoretical calculations demonstrate that the charge transport in the zero Hall plateau state is conducted by two counter-propagating edge states that arise from the combined effects of Landau levels and large Zeeman effect in strong magnetic fields. Our result demonstrates the intricate interplay among intrinsic magnetic order, external magnetic field, and nontrivial band topology in MnBi2Te4.
We carried out a comprehensive study of electronic transport, thermal and thermodynamic properties in FeCr$_2$Te$_4$ single crystals. It exhibits bad-metallic behavior and anomalous Hall effect (AHE) below a weak-itinerant paramagentic-to-ferrimagnetic transition $T_c$ $sim$ 123 K. The linear scaling between the anomalous Hall resistivity $rho_{xy}$ and the longitudinal resistivity $rho_{xx}$ implies that the AHE in FeCr$_2$Te$_4$ is most likely dominated by extrinsic skew-scattering mechanism rather than intrinsic KL or extrinsic side-jump mechanism, which is supported by our Berry phase calculations.
The quantum anomalous Hall (QAH) effect has recently been realized in thin films of intrinsic magnetic topological insulators (IMTIs) like MnBi$_2$Te$_4$. Here we point out that that the QAH gaps of these IMTIs can be optimized, and that both axion insulator/semimetal and Chern insulator/semimetal transitions can be driven by electrical gate fields on the $sim 10$ meV/nm scale. This effect is described by combining a simplified coupled-Dirac-cone model of multilayer thin films with Schr{o}dinger-Poisson self-consistent-field equations.
Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$, the $n=$~1 and 2 members of a modular (Bi$_2$Te$_3$)$_n$(MnBi$_2$Te$_4$) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi$_2$Te$_3$-terminated surfaces but remains preserved for MnBi$_2$Te$_4$-terminated surfaces. Our results firmly establish the topologically non-trivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا