No Arabic abstract
The discovery of stable room temperature ferroelectricity in Croconic Acid, an organic ferroelectric material, with polarization values on par with those found in inorganic ferroelectric materials and highest among organic ferroelectric materials, has opened up possibilities to realize myriads of nano-electronic and spintronic devices based on organic ferroelectrics. Such possibilities require an adequate understanding of the ferroelectric properties of Croconic Acid grown on surfaces that are commonly employed in device fabrication. While several macroscopic studies on relatively larger crystals of Croconic Acid have been performed, studies on thin films are only in their early stages. We have grown thin films of Croconic Acid on gold and cobalt surfaces, which are commonly used in spintronic devices as metallic electrodes, and studied the ferroelectric response of the films using ex-situ Piezoresponse Force Microscopy at room temperature. We show that the polarization reversal in Croconic Acid domains is sensitive to the substrate surface. Using the same experimental protocol, we observe the robust polarization reversal of a single, mostly in-plane electrical domain for a cobalt substrate, whereas polarization reversal is hardly observed for a gold substrate. We attribute this difference to the influence of substrates on the Croconic Acid molecular networks. Our study suggests that to realize devices one has to take care about the substrate on which Croconic Acid will be deposited. The fact that polarization switching is robust on cobalt surface can be used to fabricate multifunctional devices that utilize the cobalt-Croconic Acid interface.
It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorporated in nanoscale devices is unknown. In this work, we demonstrate, upon ferroelectric switching at the nanoscale, stable and enduring room temperature polarization with no leakage current in Croconic Acid thin films. We thus show that it is a promising lead-free organic ferroelectric toward integration in nanoscale devices. The challenging switching current and polarization reversal characterization at the nanoscale was done using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and the concurrent electromechanical strain response. Indeed, this combination can help to rationalize otherwise asymmetric polarization-voltage data and distorted hysteresis due to current jumps below the background noise, which are statistically washed away in macrojunctions but become prevalent at the nanoscale. These results are valid irrespective of the ferroelectrics nature, organic or inorganic. Beyond the potential of Croconic Acid as an ecological ferroelectric material in devices, our detection of a clear nanoscopic polarization switching current thus paves the way for a fundamental understanding and technological applications of the polarization reversal mechanism at the nanoscale.
Domain structures of 320 nm thin epitaxial films of ferroelectric PbTiO3 grown by MOCVD technique in identical conditions on SmScO3 and TbScO3 perovskite sub- strates have been investigated by Raman spectroscopy and piezoresponse force microscopy techniques. Phonon frequency shifts and typical domain structure motifs are discussed. The results reveal strikingly different domain structure architecture: domain structures of the PbTiO3 film grown on SmScO3 have dominantly a-domain orientation while strongly preferential c-domain orientation was found in the PbTiO3 film grown on the TbScO3 substrate. Differences between the two cases are traced back to the film-substrate lattice mismatch at the deposition temperature.
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >=20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
The mean-field Landau-type theory is used to analyze the polarization properties of epitaxial ferroelectric thin films grown on dissimilar cubic substrates, which induce biaxial compressive stress in the film plane. The intrinsic effect of the film surfaces on the spontaneous polarization is taken into account via the concept of the extrapolation length. The theory simultaneously allows for the influence of the misfit strain imposed on the film lattice by a thick substrate. Numerical calculations are performed for PbTiO3 and BaTiO3 films under an assumption of the polarization reduction in surface layers. The film mean polarization is calculated as a function of film thickness, temperature, and misfit strain. It is shown that the negative intrinsic size effect is reduced in epitaxial films due to the in-plane compression of the film lattice. At room temperature, strong reduction of the mean polarization may take place only in ultrathin films (thickness ~ 1 nm). Theoretical predictions are compared with the available experimental data on polarization properties of BaTiO3 films grown on SrRuO3 coated SrTiO3.
Co2FeAl (CFA) thin films with thickness varying from 10 nm to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by Ta or Cr layer. X-rays diffraction (XRD) revealed that the cubic $[001]$ CFA axis is normal to the substrate and that all the CFA films exhibit full epitaxial growth. The chemical order varies from the $B2$ phase to the $A2$ phase when decreasing the thickness. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer measurements show that, depending on the field orientation, one or two-step switchings occur. Moreover, the films present a quadratic MOKE signal increasing with the CFA thickness, due to the increasing chemical order. Ferromagnetic resonance, MOKE transverse bias initial inverse susceptibility and torque (TBIIST) measurements reveal that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term. The fourfold anisotropy is in accord with the crystal structure of the samples and is correlated to the biaxial strain and to the chemical order present in the films. In addition, a large negative perpendicular uniaxial anisotropy is observed. Frequency and angular dependences of the FMR linewidth show two magnon scattering and mosaicity contributions, which depend on the CFA thickness. A Gilbert damping coefficient as low as 0.0011 is found.