Do you want to publish a course? Click here

Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics

94   0   0.0 ( 0 )
 Added by Hao Zeng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, non-toxicity with earth abundant elements, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single junction solar cell. Here we report the synthesis of Ba(Zr1-xTix)S3 perovskite compounds with a reduced band gap. It is found that Ti alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 at% alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.



rate research

Read More

BaZrS3 is a prototypical chalcogenide perovskite, an emerging class of unconventional semiconductor. Recent results on powder samples reveal that it is a material with a direct band gap of 1.7-1.8 eV, a very strong light-matter interaction, and a high chemical stability. However, many of the fundamental properties are unknown, hindering the ability to apply BaZrS3 for optoelectronics. Here we report the fabrication of BaZrS3 thin films, by sulfurization of oxide films deposited by pulsed laser deposition. We show that these films are n-type with carrier densities in the range of 10^19-10^20 cm^-3. Depending on the processing temperature, the Hall mobility ranges from 2.1 to 13.7 cm^2/Vs. The absorption coefficient is > 10^5 cm-1 at photon energy > 1.97 eV. Temperature dependent conductivity measurements suggest shallow donor levels. These results assure that BaZrS3 is a promising candidate for optoelectronics such as photodetectors, photovoltaics, and light emitting diodes.
We demonstrate the making of BaZrS3 thin films by molecular beam epitaxy (MBE). BaZrS3 forms in the orthorhombic distorted-perovskite structure with corner-sharing ZrS6 octahedra. The single-step MBE process results in films smooth on the atomic scale, with near-perfect BaZrS3 stoichiometry and an atomically-sharp interface with the LaAlO3 substrate. The films grow epitaxially via two, competing growth modes: buffered epitaxy, with a self-assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated-cube-on-cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high-quality epitaxial thin films, as has been long-established for other systems including Si-Ge, III-Vs, and II-Vs. The methods demonstrated here also represent a revival of gas-source chalcogenide MBE.
Owing to its superior visible light absorption and high chemical stability, chalcogenide perovskite barium zirconium sulfide has attracted significant attention in the past few years as a potential alternative to hybrid halide perovskites for optoelectronics. However, the high processing temperatures of BaZrS3 thin films at above 1000 C severely limits their potential for device applications. Herein, we report the synthesis of BaZrS3 thin films at temperatures as low as 500 C, by changing the chemical reaction pathway. The single phase BaZrS3 thin film was confirmed by X-ray diffraction and Raman spectroscopies. Atomic force microscopy and scanning electron microscopy show that crystalline size and surface roughness were consistently reduced with decreasing annealing temperature. The lower temperatures further eliminate sulfur vacancies and carbon contaminations associated with high temperature processing. The ability to synthesize chalcogenide perovskite thin films at lower temperatures removes a major hurdle for their device fabrication. The photodetectors demonstrate fast response and an on/off ratio of 80. The fabricated field effect transistors show an ambipolar behavior with electron and hole mobilities of 16.8 cm2/Vs and 2.6 cm2/Vs, respectively.
We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, $FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3$, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap $FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3$ material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable all perovskite thin film solar cells to reach the highest efficiencies in the long term at the lowest costs.
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growth of BaZrS3, a prototypical chalcogenide, by pulsed laser deposition. X-ray diffraction studies show that the films are strongly textured out of plane and have a clear in-plane epitaxial relationship with the substrate. Electron microscopy studies confirm the presence of epitaxy for the first few layers of the film at the interface, even though away from the interface the films are polycrystalline with a large number of extended defects suggesting the potential for further improvement in growth. X-Ray reflectivity and atomic force microscopy show smooth film surfaces and interfaces between the substrate and the film. The films show strong light absorption near the band edge and photoluminescence in the visible region. The photodetector devices show fast and efficient photo response with the highest ON/OFF ratio reported for BaZrS3 films thus far. Our study opens up opportunities to realize epitaxial thin films, heterostructures, and superlattices of chalcogenide perovskites to probe fundamental physical phenomena and the resultant electronic and photonic device technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا