Do you want to publish a course? Click here

Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy

88   0   0.0 ( 0 )
 Added by Rafael Jaramillo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the making of BaZrS3 thin films by molecular beam epitaxy (MBE). BaZrS3 forms in the orthorhombic distorted-perovskite structure with corner-sharing ZrS6 octahedra. The single-step MBE process results in films smooth on the atomic scale, with near-perfect BaZrS3 stoichiometry and an atomically-sharp interface with the LaAlO3 substrate. The films grow epitaxially via two, competing growth modes: buffered epitaxy, with a self-assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated-cube-on-cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high-quality epitaxial thin films, as has been long-established for other systems including Si-Ge, III-Vs, and II-Vs. The methods demonstrated here also represent a revival of gas-source chalcogenide MBE.



rate research

Read More

BaZrS3 is a prototypical chalcogenide perovskite, an emerging class of unconventional semiconductor. Recent results on powder samples reveal that it is a material with a direct band gap of 1.7-1.8 eV, a very strong light-matter interaction, and a high chemical stability. However, many of the fundamental properties are unknown, hindering the ability to apply BaZrS3 for optoelectronics. Here we report the fabrication of BaZrS3 thin films, by sulfurization of oxide films deposited by pulsed laser deposition. We show that these films are n-type with carrier densities in the range of 10^19-10^20 cm^-3. Depending on the processing temperature, the Hall mobility ranges from 2.1 to 13.7 cm^2/Vs. The absorption coefficient is > 10^5 cm-1 at photon energy > 1.97 eV. Temperature dependent conductivity measurements suggest shallow donor levels. These results assure that BaZrS3 is a promising candidate for optoelectronics such as photodetectors, photovoltaics, and light emitting diodes.
Owing to its superior visible light absorption and high chemical stability, chalcogenide perovskite barium zirconium sulfide has attracted significant attention in the past few years as a potential alternative to hybrid halide perovskites for optoelectronics. However, the high processing temperatures of BaZrS3 thin films at above 1000 C severely limits their potential for device applications. Herein, we report the synthesis of BaZrS3 thin films at temperatures as low as 500 C, by changing the chemical reaction pathway. The single phase BaZrS3 thin film was confirmed by X-ray diffraction and Raman spectroscopies. Atomic force microscopy and scanning electron microscopy show that crystalline size and surface roughness were consistently reduced with decreasing annealing temperature. The lower temperatures further eliminate sulfur vacancies and carbon contaminations associated with high temperature processing. The ability to synthesize chalcogenide perovskite thin films at lower temperatures removes a major hurdle for their device fabrication. The photodetectors demonstrate fast response and an on/off ratio of 80. The fabricated field effect transistors show an ambipolar behavior with electron and hole mobilities of 16.8 cm2/Vs and 2.6 cm2/Vs, respectively.
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we report the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
127 - L. Riney , C. Bunker , S.-K. Bac 2020
SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize their structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growth of BaZrS3, a prototypical chalcogenide, by pulsed laser deposition. X-ray diffraction studies show that the films are strongly textured out of plane and have a clear in-plane epitaxial relationship with the substrate. Electron microscopy studies confirm the presence of epitaxy for the first few layers of the film at the interface, even though away from the interface the films are polycrystalline with a large number of extended defects suggesting the potential for further improvement in growth. X-Ray reflectivity and atomic force microscopy show smooth film surfaces and interfaces between the substrate and the film. The films show strong light absorption near the band edge and photoluminescence in the visible region. The photodetector devices show fast and efficient photo response with the highest ON/OFF ratio reported for BaZrS3 films thus far. Our study opens up opportunities to realize epitaxial thin films, heterostructures, and superlattices of chalcogenide perovskites to probe fundamental physical phenomena and the resultant electronic and photonic device technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا