Do you want to publish a course? Click here

Electronic structure of pristine and Ni-substituted LaFeO$_3$ from near edge x-ray absorption fine structure experiments and first-principles simulations

80   0   0.0 ( 0 )
 Added by Iurii Timrov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a joint theoretical and experimental study of the oxygen $K$-edge spectra for LaFeO$_3$ and homovalent Ni-substituted LaFeO$_3$ (LaFe$_{0.75}$Ni$_{0.25}$O$_3$), using first-principles simulations based on density-functional theory with extended Hubbard functionals and x-ray absorption near edge structure (XANES) measurements. Ground-state and excited-state XANES calculations employ Hubbard on-site $U$ and inter-site $V$ parameters determined from first principles and the Lanczos recursive method to obtain absorption cross sections, which allows for a reliable description of XANES spectra in transition-metal compounds in a very broad energy range, with an accuracy comparable to that of hybrid functionals but at a substantially lower cost. We show that standard gradient-corrected exchange-correlation functionals fail in capturing accurately the electronic properties of both materials. In particular, for LaFe$_{0.75}$Ni$_{0.25}$O$_3$ they do not reproduce its semiconducting behaviour and provide a poor description of the pre-edge features at the O $K$ edge. The inclusion of Hubbard interactions leads to a drastic improvement, accounting for the semiconducting ground state of LaFe$_{0.75}$Ni$_{0.25}$O$_3$ and for a good agreement between calculated and measured XANES spectra. We show that the partial substitution of Fe for Ni affects the conduction-band bottom by generating a strongly hybridized O($2p$)-Ni($3d$) minority-spin empty electronic state. The present work, based on a consistent correction of self-interaction errors, outlines the crucial role of extended Hubbard functionals to describe the electronic structure of complex transition-metal oxides such as LaFeO$_3$ and LaFe$_{0.75}$Ni$_{0.25}$O$_3$ and paves the way to future studies on similar systems.



rate research

Read More

We report the near-edge x-ray absorption fine structure (NEXAFS) spectrum of a single layer of graphite (graphene) obtained by micromechanical cleavage of Highly Ordered Pyrolytic Graphite (HOPG) on a SiO2 substrate. We utilized a PhotoEmission Electron Microscope (PEEM) to separately study single- double- and few-layers graphene (FLG) samples. In single-layer graphene we observe a splitting of the pi* resonance and a clear signature of the predicted interlayer state. The NEXAFS data illustrate the rapid evolution of the electronic structure with the increased number of layers.
159 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
The electronic structure of double perovskite Pr2MnNiO6 is studied using core x-ray photoelectron spectroscopy and x-ray absorption spectroscopy. The 2p x-ray absorption spectra show that Mn and Ni are in 2+ and 4+ states respectively. Using charge transfer multiplet analysis of Ni and Mn 2p XPS spectra, we find charge transfer energies {Delta} of 3.5 and 2.5 eV for Ni and Mn respectively. The ground state of Ni2+ and Mn4+ reveal a higher d electron count of 8.21 and 3.38 respectively as compared to the atomic values of 8.00 and 3.00 respectively thereby indicating the covalent nature of the system. The O 1s edge absorption spectra reveal a band gap of 0.9 eV which is comparable to the value obtained from first principle calculations for U-J >= 2 eV. The density of states clearly reveal a strong p-d type charge transfer character of the system, with band gap proportional to average charge transfer energy of Ni2+ and Mn4+ ions.
Fe K-edge and Se K-edge x-ray absorption near edge structure (XANES) measurements are used to study FeSe$_{1-x}$Te$_{x}$ electronic structure of chalcogenides. An intense Fe K-edge pre-edge peak due to Fe 1s$to$3d (and admixed Se/Te $p$ states) is observed, showing substantial change with the Te substitution and X-ray polarization. The main white line peak in the Se K-edge XANES due to Se 1s $to$ 4p transition appear similar to the one expected for Se$^{2-}$ systems and changes with the Te substitution. Polarization dependence reveals that unoccupied Se orbitals near the Fermi level have predominant $p_{x,y}$ character. The results provide key information on the hybridization of Fe $3d$ and chalcogen $p$ states in the Fe-based chalcogenide superconductors.
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show that the valences of Mn and Ni are basically 4+ and 2+, respectively. However, the Mn$^{3+}$ component in the $x$ = 0.00 sample gradually increases with the bulk sensitivity of the experiment, indicating that the Jahn-Teller active Mn$^{3+}$ ions are introduced in the bulk due to the site exchange between Li and Ni. The Mn$^{3+}$ component gets negligibly small in the $x$ = 0.05 sample, which indicates that the excess Li suppresses the site exchange and removes the Jahn-Teller active Mn$^{3+}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا