No Arabic abstract
The coherent manipulation of acoustic waves on the nanoscale usually requires multilayers with thicknesses and interface roughness defined down to the atomic monolayer. This results in expensive devices with predetermined functionality. Nanoscale mesoporous materials present high surface-to-volume ratio and tailorable mesopores, which allow the incorporation of chemical functionalization to nanoacoustics. However, the presence of pores with sizes comparable to the acoustic wavelength is intuitively perceived as a major roadblock in nanoacoustics. Here we present multilayered nanoacoustic resonators based on mesoporous SiO$_2$ thin-films showing acoustic resonances in the 5-100 GHz range. We characterize the acoustic response of the system using coherent phonon generation experiments. Despite resonance wavelengths comparable to the pore size, we observe for the first time unexpectedly well-defined acoustic resonances with Q-factors around 10. Our results open the path to a promising platform for nanoacoustic sensing and reconfigurable acoustic nanodevices based on soft, inexpensive fabrication methods.
It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorporated in nanoscale devices is unknown. In this work, we demonstrate, upon ferroelectric switching at the nanoscale, stable and enduring room temperature polarization with no leakage current in Croconic Acid thin films. We thus show that it is a promising lead-free organic ferroelectric toward integration in nanoscale devices. The challenging switching current and polarization reversal characterization at the nanoscale was done using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and the concurrent electromechanical strain response. Indeed, this combination can help to rationalize otherwise asymmetric polarization-voltage data and distorted hysteresis due to current jumps below the background noise, which are statistically washed away in macrojunctions but become prevalent at the nanoscale. These results are valid irrespective of the ferroelectrics nature, organic or inorganic. Beyond the potential of Croconic Acid as an ecological ferroelectric material in devices, our detection of a clear nanoscopic polarization switching current thus paves the way for a fundamental understanding and technological applications of the polarization reversal mechanism at the nanoscale.
The operation of resistive and phase-change memory (RRAM and PCM) is controlled by highly localized self-heating effects, yet detailed studies of their temperature are rare due to challenges of nanoscale thermometry. Here we show that the combination of Raman thermometry and scanning thermal microscopy (SThM) can enable such measurements with high spatial resolution. We report temperature-dependent Raman spectra of HfO$_2$, TiO$_2$ and Ge$_2$Sb$_2$Te$_5$ (GST) films, and demonstrate direct measurements of temperature profiles in lateral PCM devices. Our measurements reveal that electrical and thermal interfaces dominate the operation of such devices, uncovering a thermal boundary resistance of 30 m$^2$K$^{-1}$GW$^{-1}$ at GST-SiO$_2$ interfaces and an effective thermopower 350 $mu$V/K at GST-Pt interfaces. We also discuss possible pathways to apply Raman thermometry and SThM techniques to nanoscale and vertical resistive memory devices.
Friction is a ubiquitous phenomenon that greatly affects our everyday lives and is responsible for large amounts of energy loss in industrialised societies. Layered materials such as graphene have interesting frictional properties and are often used as (additives to) lubricants to reduce friction and protect against wear. Experimental Atomic Force Microscopy studies and detailed simulations have shown a number of intriguing effects such as friction strengthening and dependence of friction on the number of layers covering a surface. Here, we propose a simple, fundamental, model for friction on thin sheets. We use our model to explain a variety of seemingly contradictory experimental as well as numerical results. This model can serve as a basis for understanding friction on thin sheets, and opens up new possibilities for ultimately controlling their friction and wear protection.
Solid-state quantum acoustodynamic (QAD) systems provide a compact platform for quantum information storage and processing by coupling acoustic phonon sources with superconducting or spin qubits. The multi-mode composite high-overtone bulk acoustic wave resonator (HBAR) is a popular phonon source well suited for QAD. However, scattering from defects, grain boundaries, and interfacial/surface roughness in the composite transducer severely limits the phonon relaxation time in sputter-deposited devices. Here, we grow an epitaxial-HBAR, consisting of a metallic NbN bottom electrode and a piezoelectric GaN film on a SiC substrate. The acoustic impedance-matched epi-HBAR has a power injection efficiency > 99% from transducer to phonon cavity. The smooth interfaces and low defect density reduce phonon losses, yielding fxQ products and phonon lifetimes up to 1.36 x 10^17 Hz and 500 microseconds respectively. The GaN/NbN/SiC epi-HBAR is an electrically actuated, multi-mode phonon source that can be directly interfaced with NbN-based superconducting qubits or SiC-based spin qubits.
Proton radiation damage is an important failure mechanism for electronic devices in near-Earth orbits, deep space and high energy physics facilities. Protons can cause ionizing damage and atomic displacements, resulting in device degradation and malfunction. Shielding of electronics increases the weight and cost of the systems but does not eliminate destructive single events produced by energetic protons. Modern electronics based on semiconductors - even those specially designed for radiation hardness - remain highly susceptible to proton damage. Here we demonstrate that room temperature (RT) charge-density-wave (CDW) devices with quasi-two-dimensional (2D) 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10^14 H+cm^2. Current-voltage I-V characteristics of these 2D CDW devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other 2D devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic CDW devices can be attributed to their two-terminal design, quasi-2D nature of the active channel, and high concentration of charge carriers in the utilized CDW phases. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.