Do you want to publish a course? Click here

Very large thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions

131   0   0.0 ( 0 )
 Added by F. S. Bergeret
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate electronic thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions. Ferromagnetic insulators coupled to superconductors are known to induce sizable spin splitting in the superconducting density of states, and also lead to efficient spin filtering if operated as tunnel barriers. The combination of spin splitting and spin filtering is shown to yield a substantial self-amplification of the electronic heat diode effect due to breaking of the electron-hole symmetry in the system which is added to the thermal asymmetry of the junction. Large spin splitting and large spin polarization can potentially lead to thermal rectification efficiency exceeding 5 .10^4 for realistic parameters in a suitable temperature range, thereby outperforming up to a factor of 250 the heat diode effect achievable with conventional superconducting tunnel junctions. These results could be relevant for improved mastering of the heat currents in innovative phase-coherent caloritronic nanodevices, and for enhanced thermal management of quantum circuits at the nanoscale.



rate research

Read More

We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal metal-ferromagnetic insulator-superconductor (NFIS) junction, and explore the possibility of its use as a sensitive thermometer. We investigated the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature noise performance is obtained in the non-linear temperature regime for a structure based on an europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve $10$nKHz$^{-1/2}$, a realistic amplifying chain will reduce the sensitivity up to $10$$mu$KHz$^{-1/2}$. To overcome this limitation we propose a measurement scheme in a closed-circuit configuration based on state-of-art SQUID detection technology in an inductive setup. In such a case we show that temperature noise can be as low as $35$nKHz$^{-1/2}$. We also discuss a temperature-to-frequency converter where the obtained thermo-voltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to $sim 120$GHz, and transfer functions up to $200$GHz/K at around $sim 1$K. If operated as electron thermometer, the device may provide temperature noise lower than $35$nKHz$^{-1/2}$ thereby being potentially attractive for radiation sensing applications.
In electronic cooling with superconducting tunnel junctions, the cooling power is counterbalanced by the interaction with phonons and by the heat flow from the overheated leads. We study aluminium-based coolers that are equipped with a suspended normal metal and an efficient quasi-particle drain. At intermediate temperatures, the phonon bath of the suspended normal metal is cooled. At lower temperatures, by adjusting the junction transparency, we control the injection current, and thus the superconductor temperature. The device shows a strong cooling from 150 mK down to about 30 mK, a factor of five in temperature. We suggest that spatial non-uniformity in the superconductor gap limits the cooling toward lower temperatures.
We theoretically investigate heat transport in temperature-biased Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat flux through the junction displays coherent diffraction. Thermal transport is analyzed in three prototypical junction geometries highlighting their main differences. Notably, minimization of the Josephson coupling energy requires the quantum phase difference across the junction to undergo pi-slips in suitable intervals of magnetic flux. An experimental setup suited to detect thermal diffraction is proposed and analyzed.
When biased at a voltage just below a superconductors energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focussed to structures of submicron size and consequently cooling power in the picoWatt range, we have led a thorough study of devices with a large cooling power up to the nanoWatt range. Here we describe how their performance can be optimized by using a quasi-particle drain and tuning the cooling junctions tunnel barrier.
We discuss the charge and the spin tunneling currents between two Bardeen-Cooper-Schrieffer (BCS) superconductors, where one density of states is spin-split. In the presence of a large temperature bias across the junction, we predict the generation of a spin-polarized thermoelectric current. This thermo-spin effect is the result of a spontaneous particle-hole symmetry breaking in the absence of a polarizing tunnel barrier. The two spin components, which move in opposite directions, generate a spin current larger than the purely polarized case when the thermo-active component dominates over the dissipative one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا