Do you want to publish a course? Click here

Position- and momentum-squeezed quantum states in micro-scale mechanical resonators

219   0   0.0 ( 0 )
 Added by Signe Seidelin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A challenge of modern physics is to investigate the quantum behavior of a bulk material object, for instance a mechanical oscillator. We have earlier demonstrated that by coupling a mechanical oscillator to the energy levels of embedded rare-earth ion dopants, it is possible to prepare such a resonator in a low phonon number state. Here, we describe how to extend this protocol in order to prepare momentum- and position squeezed states, and we analyze how the obtainable degree of squeezing depends on the initial conditions and on the coupling of the oscillator to its thermal environment.



rate research

Read More

We study an optomechanical system in which a microwave field and an optical field are coupled to a common mechanical resonator. We explore methods that use these mechanical resonators to store quantum mechanical states and to transduce states between the electromagnetic resonators from the perspective of the effect of mechanical decoherence. Besides being of fundamental interest, this coherent quantum state transfer could have important practical implications in the field of quantum information science, as it potentially allows one to overcome intrinsic limitations of both microwave and optical platforms. We discuss several state transfer protocols and study their transfer fidelity using a fully quantum mechanical model that utilizes quantum state-diffusion techniques. This work demonstrates that mechanical decoherence should not be an insurmountable obstacle in realizing high fidelity storage and transduction.
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position and momentum variables, during a tunable time span. We study two cases: the reconstruction of the wavefunctions of pure states and the direct measurement of the density matrix of mixed states. We show that our method can be applied to several physical systems where high quantum control can be experimentally achieved.
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. In this letter, we introduce a novel interferometric scheme where the interaction of a mechanical resonator with input/output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as building block for the implementation of long-distance quantum networks of mechanical resonators.
Some predictions of quantum mechanics are in contrast with the macroscopic realm of everyday experience, in particular those originated by the Heisenberg uncertainty principle, encoded in the non-commutativity of some measurable operators. Nonetheless, in the last decade opto-mechanical experiments have actualized macroscopic mechanical oscillators exhibiting such non-classical properties. A key indicator is the asymmetry in the strength of the motional sidebands generated in an electromagnetic field that measures interferometrically the oscillator position. This asymmetry is a footprint of the quantum motion of the oscillator, being originated by the non-commutativity between its ladder operators. A further step on the path highlighting the quantum physics of macroscopic systems is the realization of strongly non-classical states and the consequent observation of a distinct quantum behavior. Here we extend indeed the analysis to a squeezed state of a macroscopic mechanical oscillator embedded in an optical cavity, produced by parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.
289 - A. Voje , J. M. Kinaret , 2011
We study the quantum dynamics of a symmetric nanomechanical graphene resonator with degenerate flexural modes. Applying voltage pulses to two back gates, flexural vibrations of the membrane can be selectively actuated and manipulated. For graphene, nonlinear response becomes important already for amplitudes comparable to the magnitude of zero point fluctuations. We show, using analytical and numerical methods, that this allows for creation of cat-like superpositions of coherent states as well as superpositions of coherent cat-like non-product states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا