No Arabic abstract
We present MeerKAT 1000 MHz and 1400 MHz observations of a bright radio galaxy in the southern hemisphere, ESO~137-006. The galaxy lies at the centre of the massive and merging Norma galaxy cluster. The MeerKAT continuum images (rms ~0.02 mJy/beam at ~10 resolution) reveal new features that have never been seen in a radio galaxy before: collimated synchrotron threads of yet unknown origin, which link the extended and bent radio lobes of ESO~137-006. The most prominent of these threads stretches in projection for about 80 kpc and is about 1 kpc in width. The radio spectrum of the threads is steep, with a spectral index of up to $alphasimeq 2$ between 1000 MHz and 1400 MHz.
We present results from multi-frequency polarization-sensitive Very Large Array observations of the Seyfert-starburst composite galaxy NGC3079. Our sensitive radio observations reveal a plethora of radio filaments comprising the radio lobes in this galaxy. We analyze the origin of these radio filaments in the context of existing Chandra X-ray and HST emission-line data. We do not find a one-to-one correlation of the radio filaments with the emission line filaments. The north-eastern lobe is highly polarized with polarization fractions $sim$33% at 5 GHz. The magnetic fields are aligned with the linear extents of the optically-thin filaments, as observed in our, as well as other observations in the literature. Our rotation measure images show evidence for rotation measure inversion in the north-eastern lobe. Our data best fit a model where the cosmic rays follow the magnetic field lines generated as a result of the dynamo mechanism. There could be additional effects like shock acceleration that might also be playing a role. We speculate that the peculiar radio lobe morphology is a result of an interplay between both the superwinds and the AGN jet that are present in the galaxy. The jet, in fact, might be playing a major role in providing the relativistic electron population that is present in the radio lobes.
The nearby elliptical galaxy IC4296 has produced a large (510 kpc) low-luminosity radio source with typical FR I core/jet/lobe morphology. The unprecedented combination of brightness sensitivity, dynamic range, and angular resolution of a new 1.28 GHz MeerKAT continuum image reveals striking new morphological features which we call threads, ribbons, and rings. The threads are faint narrow emission features originating where helical Kelvin-Helmholtz instabilities disrupt the main radio jets. The ribbons are smooth regions between the jets and the lobes, and they appear to be relics of jets powered by earlier activity that have since come into pressure equilibrium. Vortex rings in the outer portions of the lobes and their backflows indicate that the straight outer jets and ribbons are inclined by $i = 60 pm 5^circ$ from the line-of-sight, in agreement with photometric, geometric, and gas-dynamical estimates of inclination angles near the nucleus.
This paper studied the faint, diffuse extended X-ray emission associated with the radio lobes and the hot gas in the intracluster medium (ICM) environment for a sample of radio galaxies. We used shallow ($sim 10$ ks) archival Chandra observations for 60 radio galaxies (7 FR I and 53 FR II) with $0.0222 le z le 1.785$ selected from the 298 extragalactic radio sources identified in the 3CR catalog. We used Bayesian statistics to look for any asymmetry in the extended X-ray emission between regions that contain the radio lobes and regions that contain the hot gas in the ICM. In the Chandra broadband ($0.5 - 7.0$ keV), which has the highest detected X-ray flux and the highest signal-to-noise ratio, we found that the non-thermal X-ray emission from the radio lobes dominates the thermal X-ray emission from the environment for $sim 77%$ of the sources in our sample. We also found that the relative amount of on-jet axis non-thermal emission from the radio lobes tends to increase with redshift compared to the off-jet axis thermal emission from the environment. This suggests that the dominant X-ray mechanism for the non-thermal X-ray emission in the radio lobes is due to the inverse Compton upscattering of cosmic microwave background (CMB) seed photons by relativistic electrons in the radio lobes, a process for which the observed flux is roughly redshift independent due to the increasing CMB energy density with increasing redshift.
The radio continuum spectra of 14 star-forming galaxies are investigated by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of ~325 MHz to 24.5 GHz (32 GHz in case of M82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope alpha_nth = 0.59 +/- 0.20 (S_nu ~ nu^-alpha), and by a break or an exponential decline in the frequency range of 1 - 12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope alpha_th = 0.10 in the fits. The break or cutoff energies are in the range of 1.5 - 7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Halpha fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.
The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesnt properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by the electrons in the plasma having Lorentz factors of $sim$1000. We also present the contribution to CMB anisotropies due to relativistic plasmas such as giant radio galaxy lobes, expressed in terms of the extent to which the lobes have their magnetic field and particle energies are in equipartition with one another.