No Arabic abstract
This paper studied the faint, diffuse extended X-ray emission associated with the radio lobes and the hot gas in the intracluster medium (ICM) environment for a sample of radio galaxies. We used shallow ($sim 10$ ks) archival Chandra observations for 60 radio galaxies (7 FR I and 53 FR II) with $0.0222 le z le 1.785$ selected from the 298 extragalactic radio sources identified in the 3CR catalog. We used Bayesian statistics to look for any asymmetry in the extended X-ray emission between regions that contain the radio lobes and regions that contain the hot gas in the ICM. In the Chandra broadband ($0.5 - 7.0$ keV), which has the highest detected X-ray flux and the highest signal-to-noise ratio, we found that the non-thermal X-ray emission from the radio lobes dominates the thermal X-ray emission from the environment for $sim 77%$ of the sources in our sample. We also found that the relative amount of on-jet axis non-thermal emission from the radio lobes tends to increase with redshift compared to the off-jet axis thermal emission from the environment. This suggests that the dominant X-ray mechanism for the non-thermal X-ray emission in the radio lobes is due to the inverse Compton upscattering of cosmic microwave background (CMB) seed photons by relativistic electrons in the radio lobes, a process for which the observed flux is roughly redshift independent due to the increasing CMB energy density with increasing redshift.
The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesnt properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by the electrons in the plasma having Lorentz factors of $sim$1000. We also present the contribution to CMB anisotropies due to relativistic plasmas such as giant radio galaxy lobes, expressed in terms of the extent to which the lobes have their magnetic field and particle energies are in equipartition with one another.
We present a systematic analysis of the extended X-ray emission discovered around 35 FR II radio galaxies from the revised Third Cambridge catalog (3CR) Chandra Snapshot Survey with redshifts between 0.05 to 0.9. We aimed to (i) test for the presence of extended X-ray emission around FR II radio galaxies, (ii) investigate if the extended emission origin is due to Inverse Compton scattering of seed photons arising from the Cosmic Microwave Background (IC/CMB) or to thermal emission from an intracluster medium (ICM) and (iii) test the impact of this extended emission on hotspot detection. We investigated the nature of the extended X-ray emission by studying its morphology and compared our results with low-frequency radio observations (i.e., $sim$150 MHz), in the TGSS and LOFAR archives, as well as with optical images from Pan-STARRS. In addition, we optimized a search for X-ray counterparts of hotspots in 3CR FR II radio galaxies. We found statistically significant extended emission ($>$3$sigma$ confidence level) along the radio axis for $sim$90%, and in the perpendicular direction for $sim$60% of our sample. We confirmed the detection of 7 hotspots in the 0.5 - 3 keV. In the cases where the emission in the direction perpendicular to the radio axis is comparable to that along the radio axis, we suggest that the underlying radiative process is thermal emission from ICM. Otherwise, the dominant radiative process is likely non-thermal IC/CMB emission from lobes. We found that non-thermal IC/CMB is the dominant process in $sim$70% of the sources in our sample, while thermal emission from the ICM dominates in $sim$15% of them.
We present the results of the first X-ray study of a sample of 16 young radio sources classified as Compact Symmetric Objects (CSOs). We observed six of them for the first time in X-rays using {it Chandra}, re-observed four with the previous {it XMM-Newton} or {it Beppo-SAX} data, and included six other with the archival data. All the sources are nearby, $z<1$ with the age of their radio structures ($<3000$~years) derived from the hotspots advance velocity. Our results show heterogeneous nature of the CSOs indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, $L_{2-10,rm keV} sim 10^{41}$-$10^{45}$,erg,s$^{-1}$, and intrinsic absorbing column density of $N_H simeq 10^{21}$--10$^{22}$,cm$^{-2}$. In particular, we detected extended X-ray emission in 1718$-$649; a hard photon index of $Gamma simeq 1$ in 2021$+$614 and 1511$+$0518 consistent with either a Compton thick absorber or non-thermal emission from compact radio lobes, and in 0710$+$439 an ionized iron emission line at $E_{rest}=(6.62pm0.04)$,keV and EW $sim 0.15-$1.4,keV, and a decrease by an order of magnitude in the 2-10 keV flux since the 2008 {it XMM-Newton} observation in 1607$+$26. We conclude that our pilot study of CSOs provides a variety of exceptional diagnostics and highlights the importance of deep X-ray observations of large samples of young sources. This is necessary in order to constrain theoretical models for the earliest stage of radio source evolution and study the interactions of young radio sources with the interstellar environment of their host galaxies.
We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.
Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and HST observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.