No Arabic abstract
Recently, BERT has become an essential ingredient of various NLP deep models due to its effectiveness and universal-usability. However, the online deployment of BERT is often blocked by its large-scale parameters and high computational cost. There are plenty of studies showing that the knowledge distillation is efficient in transferring the knowledge from BERT into the model with a smaller size of parameters. Nevertheless, current BERT distillation approaches mainly focus on task-specified distillation, such methodologies lead to the loss of the general semantic knowledge of BERT for universal-usability. In this paper, we propose a sentence representation approximating oriented distillation framework that can distill the pre-trained BERT into a simple LSTM based model without specifying tasks. Consistent with BERT, our distilled model is able to perform transfer learning via fine-tuning to adapt to any sentence-level downstream task. Besides, our model can further cooperate with task-specific distillation procedures. The experimental results on multiple NLP tasks from the GLUE benchmark show that our approach outperforms other task-specific distillation methods or even much larger models, i.e., ELMO, with efficiency well-improved.
Knowledge distillation (KD) which transfers the knowledge from a large teacher model to a small student model, has been widely used to compress the BERT model recently. Besides the supervision in the output in the original KD, recent works show that layer-level supervision is crucial to the performance of the student BERT model. However, previous works designed the layer mapping strategy heuristically (e.g., uniform or last-layer), which can lead to inferior performance. In this paper, we propose to use the genetic algorithm (GA) to search for the optimal layer mapping automatically. To accelerate the search process, we further propose a proxy setting where a small portion of the training corpus are sampled for distillation, and three representative tasks are chosen for evaluation. After obtaining the optimal layer mapping, we perform the task-agnostic BERT distillation with it on the whole corpus to build a compact student model, which can be directly fine-tuned on downstream tasks. Comprehensive experiments on the evaluation benchmarks demonstrate that 1) layer mapping strategy has a significant effect on task-agnostic BERT distillation and different layer mappings can result in quite different performances; 2) the optimal layer mapping strategy from the proposed search process consistently outperforms the other heuristic ones; 3) with the optimal layer mapping, our student model achieves state-of-the-art performance on the GLUE tasks.
Task-agnostic knowledge distillation, a teacher-student framework, has been proved effective for BERT compression. Although achieving promising results on NLP tasks, it requires enormous computational resources. In this paper, we propose Extract Then Distill (ETD), a generic and flexible strategy to reuse the teachers parameters for efficient and effective task-agnostic distillation, which can be applied to students of any size. Specifically, we introduce two variants of ETD, ETD-Rand and ETD-Impt, which extract the teachers parameters in a random manner and by following an importance metric respectively. In this way, the student has already acquired some knowledge at the beginning of the distillation process, which makes the distillation process converge faster. We demonstrate the effectiveness of ETD on the GLUE benchmark and SQuAD. The experimental results show that: (1) compared with the baseline without an ETD strategy, ETD can save 70% of computation cost. Moreover, it achieves better results than the baseline when using the same computing resource. (2) ETD is generic and has been proven effective for different distillation methods (e.g., TinyBERT and MiniLM) and students of different sizes. The source code will be publicly available upon publication.
Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success. However, training these models can be costly both from an economic and environmental standpoint. In this work, we investigate how to effectively use unlabeled data: by exploring the task-specific semi-supervised approach, Cross-View Training (CVT) and comparing it with task-agnostic BERT in multiple settings that include domain and task relevant English data. CVT uses a much lighter model architecture and we show that it achieves similar performance to BERT on a set of sequence tagging tasks, with lesser financial and environmental impact.
This work deals with SciTail, a natural entailment challenge derived from a multi-choice question answering problem. The premises and hypotheses in SciTail were generated with no awareness of each other, and did not specifically aim at the entailment task. This makes it more challenging than other entailment data sets and more directly useful to the end-task -- question answering. We propose DEISTE (deep explorations of inter-sentence interactions for textual entailment) for this entailment task. Given word-to-word interactions between the premise-hypothesis pair ($P$, $H$), DEISTE consists of: (i) a parameter-dynamic convolution to make important words in $P$ and $H$ play a dominant role in learnt representations; and (ii) a position-aware attentive convolution to encode the representation and position information of the aligned word pairs. Experiments show that DEISTE gets $approx$5% improvement over prior state of the art and that the pretrained DEISTE on SciTail generalizes well on RTE-5.
Using prompts to utilize language models to perform various downstream tasks, also known as prompt-based learning or prompt-learning, has lately gained significant success in comparison to the pre-train and fine-tune paradigm. Nonetheless, virtually all prompt-based methods are token-level, meaning they all utilize GPTs left-to-right language model or BERTs masked language model to perform cloze-style tasks. In this paper, we attempt to accomplish several NLP tasks in the zero-shot scenario using a BERT original pre-training task abandoned by RoBERTa and other models--Next Sentence Prediction (NSP). Unlike token-level techniques, our sentence-level prompt-based method NSP-BERT does not need to fix the length of the prompt or the position to be predicted, allowing it to handle tasks such as entity linking with ease. Based on the characteristics of NSP-BERT, we offer several quick building templates for various downstream tasks. We suggest a two-stage prompt method for word sense disambiguation tasks in particular. Our strategies for mapping the labels significantly enhance the models performance on sentence pair tasks. On the FewCLUE benchmark, our NSP-BERT outperforms other zero-shot methods on most of these tasks and comes close to the few-shot methods.