No Arabic abstract
Research in the social sciences and psychology has shown that the persuasiveness of an argument depends not only the language employed, but also on attributes of the source/communicator, the audience, and the appropriateness and strength of the arguments claims given the pragmatic and discourse context of the argument. Among these characteristics of persuasive arguments, prior work in NLP does not explicitly investigate the effect of the pragmatic and discourse context when determining argument quality. This paper presents a new dataset to initiate the study of this aspect of argumentation: it consists of a diverse collection of arguments covering 741 controversial topics and comprising over 47,000 claims. We further propose predictive models that incorporate the pragmatic and discourse context of argumentative claims and show that they outperform models that rely only on claim-specific linguistic features for predicting the perceived impact of individual claims within a particular line of argument.
Discourse relations among arguments reveal logical structures of a debate conversation. However, no prior work has explicitly studied how the sequence of discourse relations influence a claims impact. This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument. We further propose DisCOC to inject and fuse the sentence-level structural discourse information with contextualized features derived from large-scale language models. Experimental results and extensive analysis show that the attention and gate mechanisms that explicitly model contexts and texts can indeed help the argument impact classification task defined by Durmus et al. (2019), and discourse structures among the context path of the claim to be classified can further boost the performance.
In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task.
Online debate forums provide users a platform to express their opinions on controversial topics while being exposed to opinions from diverse set of viewpoints. Existing work in Natural Language Processing (NLP) has shown that linguistic features extracted from the debate text and features encoding the characteristics of the audience are both critical in persuasion studies. In this paper, we aim to further investigate the role of discourse structure of the arguments from online debates in their persuasiveness. In particular, we use the factor graph model to obtain features for the argument structure of debates from an online debating platform and incorporate these features to an LSTM-based model to predict the debater that makes the most convincing arguments. We find that incorporating argument structure features play an essential role in achieving the better predictive performance in assessing the persuasiveness of the arguments in online debates.
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.
Public debate forums provide a common platform for exchanging opinions on a topic of interest. While recent studies in natural language processing (NLP) have provided empirical evidence that the language of the debaters and their patterns of interaction play a key role in changing the mind of a reader, research in psychology has shown that prior beliefs can affect our interpretation of an argument and could therefore constitute a competing alternative explanation for resistance to changing ones stance. To study the actual effect of language use vs. prior beliefs on persuasion, we provide a new dataset and propose a controlled setting that takes into consideration two reader level factors: political and religious ideology. We find that prior beliefs affected by these reader level factors play a more important role than language use effects and argue that it is important to account for them in NLP studies of persuasion.