Do you want to publish a course? Click here

Spontaneous Formation of a Superconductor-Topological Insulator-Normal Metal Layered Heterostructure

149   0   0.0 ( 0 )
 Added by Yeliang Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of graphene has spurred vigorous investigation of 2D materials, revealing a wide range of extraordinary properties and functionalities. 2D heterostructural materials have recently been fabricated by assembling isolated planes layer-by-layer in a desired sequence. Unusual properties and novel physical phenomena have been unveiled in such layered heterostructures. For example, Hofstadters butterfly, an intriguing pattern of the energy states of Bloch electrons, was predicted several decades ago to be observable only under unfeasibly strong magnetic fields in conventional materials. But it has been observed recently under current experimental conditions in graphene/BN layered heterostructures, one of the outstanding new kinds of 2D materials. Moreover, another amazing physics phenomenon, Majorana fermions was predicted to exist in heterostructural systems consisting of a superconductor (SC) and a topological insulator (TI) Journal.

rate research

Read More

Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway towards achieving QAH effect at high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single layers of MnBi2Te4 (a 2D ferromagnetic insulator) with ultra-thin Bi2Te3 in the middle, and is predicted to yield a robust QAH insulator phase with a bandgap well above thermal energy at room temperature (25 meV). Here we demonstrate the growth of a 1SL MnBi2Te4 / 4QL Bi2Te3 /1SL MnBi2Te4 heterostructure via molecular beam epitaxy, and probe the electronic structure using angle resolved photoelectron spectroscopy. We observe strong hexagonally warped massive Dirac Fermions and a bandgap of 75 meV. The magnetic origin of the gap is confirmed by the observation of broken time reversal symmetry and the exchange-Rashba effect, in excellent agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators, that will move lossless transport in topological insulators towards higher temperature.
Recent experiments demonstrating large spin-transfer torques in topological insulator (TI)-ferromagnetic metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin-transfer torque, however, remains unclear. This is because the large charge transfer from the FM to TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level to contribute to the observed spin-transfer torque. Moreover, there is yet little understanding of the impact on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based simulations for such a TI-FM heterostructure, considering the strong hybridization and charge transfer effects. We find that the original Dirac cone is destroyed by the hybridization as expected. Instead, we find a new interface state which we dub descendent state to form near the Fermi level due to the strong hybridization with the FM states at the same momentum. Such a `descendent state carries a sizable weight of the original Dirac interface state, and thus inherits the localization at the interface and the same Rashba-type spin-momentum locking. We propose that the `descendent state may be an important source of the experimentally observed large spin-transfer torque in the TI-FM heterostructure.
87 - Kyungwha Park , Gabor Csire , 2020
Superconductor-topological insulator (SC-TI) heterostructures were proposed to be a possible platform to realize and control Majorana zero-modes. Despite experimental signatures indicating their existence, univocal interpretation of the observed features demands theories including realistic electronic structures. To achieve this, we solve the Kohn-Sham-Dirac-Bogoliubov-de Gennes equations for ultrathin Bi$_2$Se$_3$ films on superconductor PdTe, within the fully relativistic Korringa-Kohn-Rostoker method, and investigate quasiparticle spectra as a function of chemical potential and film thickness. We find a strongly momentum-dependent proximity-induced gap feature where the gap sizes highly depend on characteristics of the TI states. The interface TI Dirac state is relevant to the induced gap only when the chemical potential is close to the Dirac-point energy. Otherwise, at a given chemical potential, the largest induced gap arises from the highest-energy quantum-well states, whereas the smallest gap arises from the TI topological surface state with its gap size depending on the TI pairing potential.
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An optical interferometer with a beam splitter can be considered as a classical analogue for this system. All measurements were performed at temperatures well below 1 K. The interference can be observed as periodic oscillations of the tunnel current (voltage) through the junction at fixed bias voltage (current) as a function of a perpendicular magnetic field. The magnitude of the oscillations depends on the bias point. It reaches a maximum at energy $eV$ which is close to the superconducting gap and decreases with an increase of temperature. Surprisingly, the period of the oscillations in units of magnetic flux $Delta Phi$ is equal neither to $h/e$ nor to $h/2e$, but significantly exceeds these values for larger loop circumferences. The origin of the phenomena is not clear.
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection occurs and the spin rotation angle jumps by $pi$. We discuss the origin of this phenomena, and systematically study the dependence of spin-flip and spin-conserving scattering amplitudes on the interface transparency and metal Fermi surface parameters. The interface spectrum contains a well-defined Dirac cone in the tunneling limit, and smoothly evolves into a continuum of metal induced gap states for good contacts. We also investigate the complex band structure of Bi$_2$Se$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا