Do you want to publish a course? Click here

Interplay of spin mode locking and nuclei-induced frequency focusing in quantum dots

82   0   0.0 ( 0 )
 Added by Philipp Schering
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the influence of nuclei-induced frequency focusing on the mode locking of spin coherence in quantum dots subjected to a periodic train of optical pulses. In particular, we address the question whether or not nuclei-induced frequency focusing always enhances the effect of spin mode locking. We combine two advanced semiclassical approaches and extend the resulting model by including the full dynamics of the optically excited trion state. In order to reduce the discrepancy to a full quantum model, we establish a nondeterministic pulse description by interpreting each pump pulse as a measurement. Both extensions lead to significant qualitative changes of the physics. Their combination improves the description of the corresponding experiments. Importantly, we observe the emergence of dynamic nuclear polarization, i.e., the formation of a nonzero average polarization of the nuclear spin bath, leading to a certain increase of the coherence time.



rate research

Read More

The coherent spin dynamics of resident carriers, electrons and holes, in semiconductor quantum structures is studied by periodical optical excitation using short laser pulses and in an external magnetic field. The generation and dephasing of spin polarization in an ensemble of carrier spins, for which the relaxation time of individual spins exceeds the repetition period of the laser pulses, are analyzed theoretically. Spin polarization accumulation is manifested either as resonant spin amplification or as mode-locking of carrier spin coherences. It is shown that both regimes have the same origin, while their appearance is determined by the optical pump power and the spread of spin precession frequencies in the ensemble.
Photoluminescence polarization is experimentally studied for samples with (In,Ga)As/GaAs selfassembled quantum dots in transverse magnetic field (Hanle effect) under slow modulation of the excitation light polarization from fractions of Hz to tens of kHz. The polarization reflects the evolution of strongly coupled electron-nuclear spin system in the quantum dots. Strong modification of the Hanle curves under variation of the modulation period is attributed to the peculiarities of the spin dynamics of quadrupole nuclei, which states are split due to deformation of the crystal lattice in the quantum dots. Analysis of the Hanle curves is fulfilled in the framework of a phenomenological model considering a separate dynamics of a nuclear field BNd determined by the +/- 12 nuclear spin states and of a nuclear field BNq determined by the split-off states +/- 3/2, +/- 5/2, etc. It is found that the characteristic relaxation time for the nuclear field BNd is of order of 0.5 s, while the relaxation of the field BNq is faster by three orders of magnitude.
139 - M. C. Rogge , E. Rasanen , 2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
80 - V. Tiwari , K. Makita , M. Arino 2020
We demonstrate radio-frequency tuning of the energy of individual CdTe/ZnTe quantum dots (QDs) by Surface Acoustic Waves (SAWs). Despite the very weak piezoelectric coefficient of ZnTe, SAW in the GHz range can be launched on a ZnTe surface using interdigitated transducers deposited on a c-axis oriented ZnO layer grown on ZnTe containing CdTe QDs. The photoluminescence (PL) of individual QDs is used as a nanometer-scale sensor of the acoustic strain field. The energy of QDs is modulated by SAW in the GHz range and leads to characteristic broadening of time-integrated PL spectra. The dynamic modulation of the QD PL energy can also be detected in the time domain using phase-locked time domain spectroscopy. This technique is in particular used for monitoring complex local acoustic fields resulting from the superposition of two or more SAW pulses in a cavity. Under magnetic field, the dynamic spectral tuning of a single QD by SAW can be used to generate single photons with alternating circular polarization controlled in the GHz range.
We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton $X^-$ with an electron in the $P$-shell) is identified in photoluminescence excitation spectra. A negative polarisation rate of the photoluminescence, optical pumping of the resident electron and the built-up of dynamic nuclear spin polarisation (DNSP) are observed in time-resolved optical pumping experiments when the quantum dot is excited at higher energy than the hot trion triplet state. The time and magnetic field dependence of the polarisation rate of the $X^-$ emission allows to probe the dynamics of formation of the DNSP in the optical pumping regime. We demonstrate using time-resolved measurements that the creation of a DNSP at B=0T efficiently prevents longitudinal spin relaxation of the electron caused by fluctuations of the nuclear spin bath. The DNSP is built in the microsecond range at high excitation intensity. A relaxation time of the DNSP in about 10 microseconds is observed at $B=0T$ and significantly increases under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible for the fast initialisation and relaxation of the diluted nuclear spins in this system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا