Do you want to publish a course? Click here

Coherent spin dynamics of electrons and holes in semiconductor quantum wells and quantum dots under periodical optical excitation: resonant spin amplification versus spin mode-locking

101   0   0.0 ( 0 )
 Added by Irina Yugova
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The coherent spin dynamics of resident carriers, electrons and holes, in semiconductor quantum structures is studied by periodical optical excitation using short laser pulses and in an external magnetic field. The generation and dephasing of spin polarization in an ensemble of carrier spins, for which the relaxation time of individual spins exceeds the repetition period of the laser pulses, are analyzed theoretically. Spin polarization accumulation is manifested either as resonant spin amplification or as mode-locking of carrier spin coherences. It is shown that both regimes have the same origin, while their appearance is determined by the optical pump power and the spread of spin precession frequencies in the ensemble.

rate research

Read More

We study the influence of nuclei-induced frequency focusing on the mode locking of spin coherence in quantum dots subjected to a periodic train of optical pulses. In particular, we address the question whether or not nuclei-induced frequency focusing always enhances the effect of spin mode locking. We combine two advanced semiclassical approaches and extend the resulting model by including the full dynamics of the optically excited trion state. In order to reduce the discrepancy to a full quantum model, we establish a nondeterministic pulse description by interpreting each pump pulse as a measurement. Both extensions lead to significant qualitative changes of the physics. Their combination improves the description of the corresponding experiments. Importantly, we observe the emergence of dynamic nuclear polarization, i.e., the formation of a nonzero average polarization of the nuclear spin bath, leading to a certain increase of the coherence time.
Spin-orbit (SO) interactions give a spin-dependent correction r_so to the position operator, referred to as the anomalous position operator. We study the contributions of r_so to the spin-Hall effect (SHE) in quasi two-dimensional (2D) semiconductor quantum wells with strong band structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r_so, which have not been considered in the literature so far. One term reflects the modification of the spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r_so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of the spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band structure SO coupling. For band structure SO linear in wave vector the two additional contributions cancel. For band structure SO cubic in wave vector only the contribution due to external electric field is present, and can be detected through its density dependence. In 2D hole systems both anomalous spin precession contributions vanish identically.
We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral broadening. The formation of a dynamical nuclear polarization as well as its subsequent decay by the dipole-dipole interaction is directly resolved in time. Because not limited by intrinsic nonlinearities, almost complete nuclear polarization is achieved, even at elevated temperatures. The data suggest a nonequilibrium mode of nuclear polarization, distinctly different from the spin temperature concept exploited on bulk semiconductors
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr rotation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of $g$-factor and anisotropic spin relaxation time on measured quantities are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا