Do you want to publish a course? Click here

A Polarization Encoded Photon-to-Spin Interface

75   0   0.0 ( 0 )
 Added by Kevin Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an integrated photonics device for mapping qubits encoded in the polarization of a photon onto the spin state of a solid-state defect coupled to a photonic crystal cavity: a `Polarization-Encoded Photon-to-Spin Interface (PEPSI). We perform a theoretical analysis of the state fidelitys dependence on the devices polarization extinction ratio and atom-cavity cooperativity. Furthermore, we explore the rate-fidelity trade-off through analytical and numerical models. In simulation, we show that our design enables efficient, high fidelity photon-to-spin mapping.



rate research

Read More

Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96%. Subsequently the system is used to implement a single-spin photonic switch, where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11].
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanism for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.
A single photon has many physical degrees of freedom (DOF) that can carry the state of a high-dimensional quantum system. Nevertheless, only a single DOF is usually used in any specific demonstration. Furthermore, when more DOF are being used, they are analyzed and measured one at a time. We introduce a two-qubit information system, realized by two degrees of freedom of a single photon: polarization and time. The photon arrival time is divided into two time-bins representing a qubit, while its polarization state represents a second qubit. The time difference between the two time-bins is created without an interferometer at the picosecond scale, which is much smaller than the detectors response time. The two physically different DOF are analyzed simultaneously by photon bunching between the analyzed photon and an ancilla photon. Full two-qubit states encoded in single photons were reconstructed using quantum state tomography, both when the two DOF were entangled and when they were not, with fidelities higher than 96%.
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
We propose a method for reconfiguring a relay node for polarization encoded quantum key distribution (QKD) networks. The relay can be switched between trusted and untrusted modes to adapt to different network conditions, relay distances, and security requirements. This not only extends the distance over which a QKD network operates but also enables point-to-multipoint (P2MP) network topologies. The proposed architecture centralizes the expensive and delicate single-photon detectors (SPDs) at the relay node with eased maintenance and cooling while simplifying each user node so that it only needs commercially available devices for low-cost qubit preparation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا