Do you want to publish a course? Click here

Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry

62   0   0.0 ( 0 )
 Added by Jiaqi Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Massive machine-type communications (mMTC) is a crucial scenario to support booming Internet of Things (IoTs) applications. In mMTC, although a large number of devices are registered to an access point (AP), very few of them are active with uplink short packet transmission at the same time, which requires novel design of protocols and receivers to enable efficient data transmission and accurate multi-user detection (MUD). Aiming at this problem, grant-free non-orthogonal multiple access (GF-NOMA) protocol is proposed. In GF-NOMA, active devices can directly transmit their preambles and data symbols altogether within one time frame, without grant from the AP. Compressive sensing (CS)-based receivers are adopted for non-orthogonal preambles (NOP)-based MUD, and successive interference cancellation is exploited to decode the superimposed data signals. In this paper, we model, analyze, and optimize the CS-based GF-MONA mMTC system via stochastic geometry (SG), from an aspect of network deployment. Based on the SG network model, we first analyze the success probability as well as the channel estimation error of the CS-based MUD in the preamble phase and then analyze the average aggregate data rate in the data phase. As IoT applications highly demands low energy consumption, low infrastructure cost, and flexible deployment, we optimize the energy efficiency and AP coverage efficiency of GF-NOMA via numerical methods. The validity of our analysis is verified via Monte Carlo simulations. Simulation results also show that CS-based GF-NOMA with NOP yields better MUD and data rate performances than contention-based GF-NOMA with orthogonal preambles and CS-based grant-free orthogonal multiple access.



rate research

Read More

86 - Ke Lai , Jing Lei , Yansha Deng 2021
Grant-free sparse code multiple access (GF-SCMA) is considered to be a promising multiple access candidate for future wireless networks. In this paper, we focus on characterizing the performance of uplink GF-SCMA schemes in a network with ubiquitous connections, such as the Internet of Things (IoT) networks. To provide a tractable approach to evaluate the performance of GF-SCMA, we first develop a theoretical model taking into account the property of multi-user detection (MUD) in the SCMA system. We then analyze the error rate performance of GF-SCMA in the case of codebook collision to investigate the reliability of GF-SCMA when reusing codebook in massive IoT networks. For performance evaluation, accurate approximations for both success probability and average symbol error probability (ASEP) are derived. To elaborate further, we utilize the analytical results to discuss the impact of codeword sparse degree in GFSCMA. After that, we conduct a comparative study between SCMA and its variant, dense code multiple access (DCMA), with GF transmission to offer insights into the effectiveness of these two schemes. This facilitates the GF-SCMA system design in practical implementation. Simulation results show that denser codebooks can help to support more UEs and increase the reliability of data transmission in a GF-SCMA network. Moreover, a higher success probability can be achieved by GFSCMA with denser UE deployment at low detection thresholds since SCMA can achieve overloading gain.
110 - Dongdong Jiang , , Ying Cui 2021
Device activity detection is one main challenge in grant-free massive access, which is recently proposed to support massive machine-type communications (mMTC). Existing solutions for device activity detection fail to consider inter-cell interference generated by massive IoT devices or important prior information on device activities and inter-cell interference. In this paper, given different numbers of observations and network parameters, we consider both non-cooperative device activity detection and cooperative device activity detection in a multi-cell network, consisting of many access points (APs) and IoT devices. Under each activity detection mechanism, we consider the joint maximum likelihood (ML) estimation and joint maximum a posterior probability (MAP) estimation of both device activities and interference powers, utilizing tools from probability, stochastic geometry, and optimization. Each estimation problem is a challenging non-convex problem, and a coordinate descent algorithm is proposed to obtain a stationary point. Each proposed joint ML estimation extends the existing one for a single-cell network by considering the estimation of interference powers, together with the estimation of device activities. Each proposed joint MAP estimation further enhances the corresponding joint ML estimation by exploiting prior distributions of device activities and interference powers. The proposed joint ML estimation and joint MAP estimation under cooperative detection outperform the respective ones under non-cooperative detection at the costs of increasing backhaul burden, knowledge of network parameters, and computational complexities.
A high success rate of grant-free random access scheme is proposed to support massive access for machine-to-machine communications in massive multipleinput multiple-output systems. This scheme allows active user equipments (UEs) to transmit their modulated uplink messages along with super pilots consisting of multiple sub-pilots to a base station (BS). Then, the BS performs channel state information (CSI) estimation and uplink message decoding by utilizing a proposed graph combined clustering independent component analysis (GCICA) decoding algorithm, and then employs the estimated CSIs to detect active UEs by utilizing the characteristic of asymptotic favorable propagation of massive MIMO channel. We call this proposed scheme as GCICA based random access (GCICA-RA) scheme. We analyze the successful access probability, missed detection probability, and uplink throughput of the GCICA-RA scheme. Numerical results show that, the GCICA-RA scheme significantly improves the successful access probability and uplink throughput, decreases missed detection probability, and provides low CSI estimation error at the same time.
In this paper, user detection performance of a grant-free uplink transmission in a large scale antenna system is analyzed, in which a general grant-free multiple access is considered as the system model and Zadoff-Chu sequence is used for the uplink pilot. The false alarm probabilities of various user detection schemes under the target detection probabilities are evaluated.
101 - Yan Liu , Yansha Deng , Hui Zhou 2021
Grant-free non-orthogonal multiple access (GF-NOMA) is a potential technique to support massive Ultra-Reliable and Low-Latency Communication (mURLLC) service. However, the dynamic resource configuration in GF-NOMA systems is challenging due to random traffics and collisions, that are unknown at the base station (BS). Meanwhile, joint consideration of the latency and reliability requirements makes the resource configuration of GF-NOMA for mURLLC more complex. To address this problem, we develop a general learning framework for signature-based GF-NOMA in mURLLC service taking into account the multiple access signature collision, the UE detection, as well as the data decoding procedures for the K-repetition GF and the Proactive GF schemes. The goal of our learning framework is to maximize the long-term average number of successfully served users (UEs) under the latency constraint. We first perform a real-time repetition value configuration based on a double deep Q-Network (DDQN) and then propose a Cooperative Multi-Agent learning technique based on the DQN (CMA-DQN) to optimize the configuration of both the repetition values and the contention-transmission unit (CTU) numbers. Our results show that the number of successfully served UEs under the same latency constraint in our proposed learning framework is up to ten times for the K-repetition scheme, and two times for the Proactive scheme, more than that with fixed repetition values and CTU numbers. In addition, the superior performance of CMA-DQN over the conventional load estimation-based approach (LE-URC) demonstrates its capability in dynamically configuring in long term. Importantly, our general learning framework can be used to optimize the resource configuration problems in all the signature-based GF-NOMA schemes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا