Do you want to publish a course? Click here

Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction

97   0   0.0 ( 0 )
 Added by Elizabeth Cole
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many real-world signal sources are complex-valued, having real and imaginary components. However, the vast majority of existing deep learning platforms and network architectures do not support the use of complex-valued data. MRI data is inherently complex-valued, so existing approaches discard the richer algebraic structure of the complex data. In this work, we investigate end-to-end complex-valued convolutional neural networks - specifically, for image reconstruction in lieu of two-channel real-valued networks. We apply this to magnetic resonance imaging reconstruction for the purpose of accelerating scan times and determine the performance of various promising complex-valued activation functions. We find that complex-valued CNNs with complex-valued convolutions provide superior reconstructions compared to real-valued convolutions with the same number of trainable parameters, over a variety of network architectures and datasets.



rate research

Read More

Retrospectively gated cine (retro-cine) MRI is the clinical standard for cardiac functional analysis. Deep learning (DL) based methods have been proposed for the reconstruction of highly undersampled MRI data and show superior image quality and magnitude faster reconstruction time than CS-based methods. Nevertheless, it remains unclear whether DL reconstruction is suitable for cardiac function analysis. To address this question, in this study we evaluate and compare the cardiac functional values (EDV, ESV and EF for LV and RV, respectively) obtained from highly accelerated MRI acquisition using DL based reconstruction algorithm (DL-cine) with values from CS-cine and conventional retro-cine. To the best of our knowledge, this is the first work to evaluate the cine MRI with deep learning reconstruction for cardiac function analysis and compare it with other conventional methods. The cardiac functional values obtained from cine MRI with deep learning reconstruction are consistent with values from clinical standard retro-cine MRI.
Computer vision tasks are often expected to be executed on compressed images. Classical image compression standards like JPEG 2000 are widely used. However, they do not account for the specific end-task at hand. Motivated by works on recurrent neural network (RNN)-based image compression and three-dimensional (3D) reconstruction, we propose unified network architectures to solve both tasks jointly. These joint models provide image compression tailored for the specific task of 3D reconstruction. Images compressed by our proposed models, yield 3D reconstruction performance superior as compared to using JPEG 2000 compression. Our models significantly extend the range of compression rates for which 3D reconstruction is possible. We also show that this can be done highly efficiently at almost no additional cost to obtain compression on top of the computation already required for performing the 3D reconstruction task.
The growing demand for head magnetic resonance imaging (MRI) examinations, along with a global shortage of radiologists, has led to an increase in the time taken to report head MRI scans around the world. For many neurological conditions, this delay can result in increased morbidity and mortality. An automated triaging tool could reduce reporting times for abnormal examinations by identifying abnormalities at the time of imaging and prioritizing the reporting of these scans. In this work, we present a convolutional neural network for detecting clinically-relevant abnormalities in $text{T}_2$-weighted head MRI scans. Using a validated neuroradiology report classifier, we generated a labelled dataset of 43,754 scans from two large UK hospitals for model training, and demonstrate accurate classification (area under the receiver operating curve (AUC) = 0.943) on a test set of 800 scans labelled by a team of neuroradiologists. Importantly, when trained on scans from only a single hospital the model generalized to scans from the other hospital ($Delta$AUC $leq$ 0.02). A simulation study demonstrated that our model would reduce the mean reporting time for abnormal examinations from 28 days to 14 days and from 9 days to 5 days at the two hospitals, demonstrating feasibility for use in a clinical triage environment.
Several variants of Convolutional Neural Networks (CNN) have been developed for Magnetic Resonance (MR) image reconstruction. Among them, U-Net has shown to be the baseline architecture for MR image reconstruction. However, sub-sampling is performed by its pooling layers, causing information loss which in turn leads to blur and missing fine details in the reconstructed image. We propose a modification to the U-Net architecture to recover fine structures. The proposed network is a wavelet packet transform based encoder-decoder CNN with residual learning called CNN. The proposed WCNN has discrete wavelet transform instead of pooling and inverse wavelet transform instead of unpooling layers and residual connections. We also propose a deep cascaded framework (DC-WCNN) which consists of cascades of WCNN and k-space data fidelity units to achieve high quality MR reconstruction. Experimental results show that WCNN and DC-WCNN give promising results in terms of evaluation metrics and better recovery of fine details as compared to other methods.
Compressive sensing (CS) is widely used to reduce the acquisition time of magnetic resonance imaging (MRI). Although state-of-the-art deep learning based methods have been able to obtain fast, high-quality reconstruction of CS-MR images, their main drawback is that they treat complex-valued MRI data as real-valued entities. Most methods either extract the magnitude from the complex-valued entities or concatenate them as two real-valued channels. In both the cases, the phase content, which links the real and imaginary parts of the complex-valued entities, is discarded. In order to address the fundamental problem of real-valued deep networks, i.e. their inability to process complex-valued data, we propose a novel framework based on a complex-valued generative adversarial network (Co-VeGAN). Our model can process complex-valued input, which enables it to perform high-quality reconstruction of the CS-MR images. Further, considering that phase is a crucial component of complex-valued entities, we propose a novel complex-valued activation function, which is sensitive to the phase of the input. Extensive evaluation of the proposed approach on different datasets using various sampling masks demonstrates that the proposed model significantly outperforms the existing CS-MRI reconstruction techniques in terms of peak signal-to-noise ratio as well as structural similarity index. Further, it uses significantly fewer trainable parameters to do so, as compared to the real-valued deep learning based methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا