Do you want to publish a course? Click here

Free-form Grale lens inversion of galaxy clusters with up to 1000 multiple images

81   0   0.0 ( 0 )
 Added by Agniva Ghosh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the near future, ultra deep observations of galaxy clusters with HST or JWST will uncover $300-1000$ lensed multiple images, increasing the current count per cluster by up to an order of magnitude. This will further refine our view of clusters, leading to a more accurate and precise mapping of the total and dark matter distribution in clusters, and enabling a better understanding of background galaxy population and their luminosity functions. However, to effectively use that many images as input to lens inversion will require a re-evaluation of, and possibly upgrades to the existing methods. In this paper we scrutinize the performance of the free-form lens inversion method Grale in the regime of $150-1000$ input images, using synthetic massive galaxy clusters. Our results show that with an increasing number of input images, Grale produces improved reconstructed mass distributions, with the fraction of the lens plane recovered at better than $10%$ accuracy increasing from $40-50%$ for $sim!!150$ images to $65%$ for $sim!1000$ images. The reconstructed time delays imply a more precise measurement of $H_0$, with $lesssim 1%$ bias. While the fidelity of the reconstruction improves with the increasing number of multiple images used as model constraints, $sim 150$ to $sim 1000$, the lens plane rms deteriorates from $sim 0.11$ to $sim 0.28$. Since lens plane rms is not necessarily the best indicator of the quality of the mass reconstructions, looking for an alternative indicator is warranted.



rate research

Read More

We use the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) strong lensing image catalog of the merging galaxy cluster Abell 370 to obtain a mass model using the free-form lens inversion algorithm GRALE. The improvement of the strong lensing data quality results in a lens plane rms of only 0.45 arcsec, about a factor of two lower than that of our existing HFF v4 reconstruction. We attribute the improvement to spectroscopic data and use of the full reprocessed HST mosaics. In our reconstructed mass model, we found indications of three distinct mass features in Abell 370: (i) a $sim 35$ kpc offset between the northern BCG and the nearest mass peak, (ii) a $sim 100$ kpc mass concentration of roughly critical density $sim 250$ kpc east of the main cluster, and (iii) a probable filament-like structure passing N-S through the cluster. While (i) is present in some form in most publicly available reconstructions spanning the range of modeling techniques: parametric, hybrid, and free-form, (ii) and (iii) are recovered by only about half of the reconstructions. We tested our hypothesis on the presence of the filament-like structure by creating a synthetic cluster - Irtysh IIIc - mocking the situation of a cluster with external mass. We also computed the source plane magnification distributions. Using them we estimated the probabilities of magnifications in the source plane, and scrutinized their redshift dependence. Finally, we explored the lensing effects of Abell 370 on the luminosity functions of sources at $z_s=9.0$, finding it consistent with published results.
Abell 2744, a massive Hubble Frontier Fields merging galaxy cluster with many multiple images in the core has been the subject of many lens
A new method is presented for modelling the physical properties of galaxy clusters. Our technique moves away from the traditional approach of assuming specific parameterised functional forms for the variation of physical quantities within the cluster, and instead allows for a free-form reconstruction, but one for which the level of complexity is determined automatically by the observational data and may depend on position within the cluster. This is achieved by representing each independent cluster property as some interpolating or approximating function that is specified by a set of control points, or nodes, for which the number of nodes, together with their positions and amplitudes, are allowed to vary and are inferred in a Bayesian manner from the data. We illustrate our nodal approach in the case of a spherical cluster by modelling the electron pressure profile Pe(r) in analyses both of simulated Sunyaev-Zeldovich (SZ) data from the Arcminute MicroKelvin Imager (AMI) and of real AMI observations of the cluster MACS J0744+3927 in the CLASH sample. We demonstrate that one may indeed determine the complexity supported by the data in the reconstructed Pe(r), and that one may constrain two very important quantities in such an analysis: the cluster total volume integrated Comptonisation parameter (Ytot) and the extent of the gas distribution in the cluster (rmax). The approach is also well-suited to detecting clusters in blind SZ surveys.
188 - Patrick L. Kelly 2014
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z=0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The clusters gravitational potential also creates multiple images of the z=1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.
The information about the mass density of galaxy clusters provided by the gravitational lens effect has inspired many inversion techniques. In this article, updates to the previously introduced method in Grale are described, and explored in a number of examples. The first looks into a different way of incorporating time delay information, not requiring the unknown source position. It is found that this avoids a possible bias that leads to over-focusing the images, i.e. providing source position estimates that lie in a considerably smaller region than the true positions. The second is inspired by previous reconstructions of the cluster of galaxies MACS J1149.6+2223, where a multiply-imaged background galaxy contained a supernova, SN Refsdal, of which four additional images were produced by the presence of a smaller cluster galaxy. The inversion for the cluster as a whole, was not able to recover sufficient detail interior to this quad. We show how constraints on such different scales, from the entire cluster to a single member galaxy, can now be used, allowing such small scale substructures to be resolved. Finally, the addition of weak lensing information to this method is investigated. While this clearly helps recover the environment around the strong lensing region, the mass sheet degeneracy may make a full strong and weak inversion difficult, depending on the quality of the ellipticity information at hand. We encounter ring-like structure at the boundary of the two regimes, argued to be the result of combining strong and weak lensing constraints, possibly affected by degeneracies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا