Do you want to publish a course? Click here

Noisy Inductive Matrix Completion Under Sparse Factor Models

172   0   0.0 ( 0 )
 Added by Akshay Soni
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Inductive Matrix Completion (IMC) is an important class of matrix completion problems that allows direct inclusion of available features to enhance estimation capabilities. These models have found applications in personalized recommendation systems, multilabel learning, dictionary learning, etc. This paper examines a general class of noisy matrix completion tasks where the underlying matrix is following an IMC model i.e., it is formed by a mixing matrix (a priori unknown) sandwiched between two known feature matrices. The mixing matrix here is assumed to be well approximated by the product of two sparse matrices---referred here to as sparse factor models. We leverage the main theorem of Soni:2016:NMC and extend it to provide theoretical error bounds for the sparsity-regularized maximum likelihood estimators for the class of problems discussed in this paper. The main result is general in the sense that it can be used to derive error bounds for various noise models. In this paper, we instantiate our main result for the case of Gaussian noise and provide corresponding error bounds in terms of squared loss.



rate research

Read More

Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods often assume a simple uniform missing mechanism. In this work, we study matrix completion from corrupted data under a novel low-rank missing mechanism. The probability matrix of observation is estimated via a high dimensional low-rank matrix estimation procedure, and further used to complete the target matrix via inverse probabilities weighting. Due to both high dimensional and extreme (i.e., very small) nature of the true probability matrix, the effect of inverse probability weighting requires careful study. We derive optimal asymptotic convergence rates of the proposed estimators for both the observation probabilities and the target matrix.
Most recent results in matrix completion assume that the matrix under consideration is low-rank or that the columns are in a union of low-rank subspaces. In real-world settings, however, the linear structure underlying these models is distorted by a (typically unknown) nonlinear transformation. This paper addresses the challenge of matrix completion in the face of such nonlinearities. Given a few observations of a matrix that are obtained by applying a Lipschitz, monotonic function to a low rank matrix, our task is to estimate the remaining unobserved entries. We propose a novel matrix completion method that alternates between low-rank matrix estimation and monotonic function estimation to estimate the missing matrix elements. Mean squared error bounds provide insight into how well the matrix can be estimated based on the size, rank of the matrix and properties of the nonlinear transformation. Empirical results on synthetic and real-world datasets demonstrate the competitiveness of the proposed approach.
We consider the matrix completion problem of recovering a structured low rank matrix with partially observed entries with mixed data types. Vast majority of the solutions have proposed computationally feasible estimators with strong statistical guarantees for the case where the underlying distribution of data in the matrix is continuous. A few recent approaches have extended using similar ideas these estimators to the case where the underlying distributions belongs to the exponential family. Most of these approaches assume that there is only one underlying distribution and the low rank constraint is regularized by the matrix Schatten Norm. We propose a computationally feasible statistical approach with strong recovery guarantees along with an algorithmic framework suited for parallelization to recover a low rank matrix with partially observed entries for mixed data types in one step. We also provide extensive simulation evidence that corroborate our theoretical results.
This paper considers the problem of matrix completion when the observed entries are noisy and contain outliers. It begins with introducing a new optimization criterion for which the recovered matrix is defined as its solution. This criterion uses the celebrated Huber function from the robust statistics literature to downweigh the effects of outliers. A practical algorithm is developed to solve the optimization involved. This algorithm is fast, straightforward to implement, and monotonic convergent. Furthermore, the proposed methodology is theoretically shown to be stable in a well defined sense. Its promising empirical performance is demonstrated via a sequence of simulation experiments, including image inpainting.
124 - Antoine Ledent , Rodrigo Alves , 2020
We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As particular cases of our framework, we present models which can incorporate user and item biases or community information in a joint and additive fashion. We analyse the performance of OMIC on several synthetic and real datasets. On synthetic datasets with a sliding scale of user bias relevance, we show that OMIC better adapts to different regimes than other methods. On real-life datasets containing user/items recommendations and relevant side information, we find that OMIC surpasses the state-of-the-art, with the added benefit of greater interpretability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا