Do you want to publish a course? Click here

Can Machine Learning Be Used to Recognize and Diagnose Coughs?

279   0   0.0 ( 0 )
 Added by Usama Masood
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Emerging wireless technologies, such as 5G and beyond, are bringing new use cases to the forefront, one of the most prominent being machine learning empowered health care. One of the notable modern medical concerns that impose an immense worldwide health burden are respiratory infections. Since cough is an essential symptom of many respiratory infections, an automated system to screen for respiratory diseases based on raw cough data would have a multitude of beneficial research and medical applications. In literature, machine learning has already been successfully used to detect cough events in controlled environments. In this paper, we present a low complexity, automated recognition and diagnostic tool for screening respiratory infections that utilizes Convolutional Neural Networks (CNNs) to detect cough within environment audio and diagnose three potential illnesses (i.e., bronchitis, bronchiolitis and pertussis) based on their unique cough audio features. Both proposed detection and diagnosis models achieve an accuracy of over 89%, while also remaining computationally efficient. Results show that the proposed system is successfully able to detect and separate cough events from background noise. Moreover, the proposed single diagnosis model is capable of distinguishing between different illnesses without the need of separate models.

rate research

Read More

Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in one or both languages being mixed. In this work, we show that fine-tuning ASR models on code-switched speech harms performance on monolingual speech. We point out the need to optimize models for code-switching while also ensuring that monolingual performance is not sacrificed. Monolingual models may be trained on thousands of hours of speech which may not be available for re-training a new model. We propose using the Learning Without Forgetting (LWF) framework for code-switched ASR when we only have access to a monolingual model and do not have the data it was trained on. We show that it is possible to train models using this framework that perform well on both code-switched and monolingual test sets. In cases where we have access to monolingual training data as well, we propose regularization strategies for fine-tuning models for code-switching without sacrificing monolingual accuracy. We report improvements in Word Error Rate (WER) in monolingual and code-switched test sets compared to baselines that use pooled data and simple fine-tuning.
194 - Long Zhou , Jinyu Li , Eric Sun 2021
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any language information or with a 1-hot language ID (LID) vector to guide the recognition of the target language. In practice, the user can be prompted to pre-select several languages he/she can speak. The multilingual model without LID cannot well utilize the language information set by the user while the multilingual model with LID can only handle one pre-selected language. In this paper, we propose a novel configurable multilingual model (CMM) which is trained only once but can be configured as different models based on users choices by extracting language-specific modules together with a universal model from the trained CMM. Particularly, a single CMM can be deployed to any user scenario where the users can pre-select any combination of languages. Trained with 75K hours of transcribed anonymized Microsoft multilingual data and evaluated with 10-language test sets, the proposed CMM improves from the universal multilingual model by 26.0%, 16.9%, and 10.4% relative word error reduction when the user selects 1, 2, or 3 languages, respectively. CMM also performs significantly better on code-switching test sets.
In speech recognition problems, data scarcity often poses an issue due to the willingness of humans to provide large amounts of data for learning and classification. In this work, we take a set of 5 spoken Harvard sentences from 7 subjects and consider their MFCC attributes. Using character level LSTMs (supervised learning) and OpenAIs attention-based GPT-2 models, synthetic MFCCs are generated by learning from the data provided on a per-subject basis. A neural network is trained to classify the data against a large dataset of Flickr8k speakers and is then compared to a transfer learning network performing the same task but with an initial weight distribution dictated by learning from the synthetic data generated by the two models. The best result for all of the 7 subjects were networks that had been exposed to synthetic data, the model pre-trained with LSTM-produced data achieved the best result 3 times and the GPT-2 equivalent 5 times (since one subject had their best result from both models at a draw). Through these results, we argue that speaker classification can be improved by utilising a small amount of user data but with exposure to synthetically-generated MFCCs which then allow the networks to achieve near maximum classification scores.
One way to analyse the behaviour of machine learning models is through local explanations that highlight input features that maximally influence model predictions. Sensitivity analysis, which involves analysing the effect of input perturbations on model predictions, is one of the methods to generate local explanations. Meaningful input perturbations are essential for generating reliable explanations, but there exists limited work on what such perturbations are and how to perform them. This work investigates these questions in the context of machine listening models that analyse audio. Specifically, we use a state-of-the-art deep singing voice detection (SVD) model to analyse whether explanations from SoundLIME (a local explanation method) are sensitive to how the method perturbs model inputs. The results demonstrate that SoundLIME explanations are sensitive to the content in the occluded input regions. We further propose and demonstrate a novel method for quantitatively identifying suitable content type(s) for reliably occluding inputs of machine listening models. The results for the SVD model suggest that the average magnitude of input mel-spectrogram bins is the most suitable content type for temporal explanations.
Predicting the execution time of queries is an important problem with applications in scheduling, service level agreements and error detection. During query planning, a cost is associated with the chosen execution plan and used to rank competing plans. It would be convenient to use that cost to predict execution time, but it has been claimed in the literature that this is not possible. In this paper, we thoroughly investigate this claim considering both linear and non-linear models. We find that the accuracy using more complex models with only the optimizer cost is comparable to the reported accuracy in the literature. The most accurate method in the literature is nearest-neighbour regression which does not produce a model. The published results used a large feature set to identify nearest neighbours. We show that it is possible to achieve the same level of accuracy using only the cost to identify nearest neighbours. Using a smaller feature set brings the advantages of reduced overhead in terms of both storage space for the training data and the time to produce a prediction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا