No Arabic abstract
Hot spot of Berry curvature is usually found at Bloch band anti-crossings, where the Hall effect due to the Berry phase can be most pronounced. With small gaps there, the adiabatic limit for the existing formulations of Hall current can be exceeded in a moderate electric field. Here we present a theory of non-adiabatic Hall effect, capturing non-perturbatively the across gap electron-hole excitations by the electric field. We find a general connection between the field induced electron-hole coherence and intrinsic Hall velocity. In coherent evolution, the electron-hole coherence can manifest as a sizeable ac Hall velocity. When environmental noise is taken into account, its joint action with the electric field favors a form of electron-hole coherence that is function of wavevector and field only, leading to a dc nonlinear Hall effect. The Hall current has all odd order terms in field, and still retains the intrinsic role of the Berry curvature. The quantitative demonstration uses the example of gapped Dirac cones, and our theory can be used to describe the bulk pseudospin Hall current in insulators with gapped edge such as graphene and 2D MnBi$_{2}$Te$_{4}$
We theoretically investigate the localization mechanism of quantum anomalous Hall Effect (QAHE) with large Chern numbers $mathcal{C}$ in bilayer graphene and magnetic topological insulator thin films, by applying either nonmagnetic or spin-flip (magnetic) disorders. We show that, in the presence of nonmagnetic disorders, the QAHEs in both two systems become Anderson insulating as expected when the disorder strength is large enough. However, in the presence of spin-flip disorders, the localization mechanisms in these two host materials are completely distinct. For the ferromagnetic bilayer graphene with Rashba spin-orbit coupling, the QAHE with $mathcal{C}=4$ firstly enters a Berry-curvature mediated metallic phase, and then becomes localized to be Anderson insulator along with the increasing of disorder strength. While in magnetic topological insulator thin films, the QAHE with $mathcal{C=N}$ firstly enters a Berry-curvature mediated metallic phase, then transitions to another QAHE with ${mathcal{C}}={mathcal{N}}-1$ along with the increasing of disorder strength, and is finally localized to the Anderson insulator after ${mathcal{N}}-1$ cycling between the QAHE and metallic phases. For the unusual findings in the latter system, by analyzing the Berry curvature evolution, it is known that the phase transitions originate from the exchange of Berry curvature carried by conduction (valence) bands. At the end, we provide a phenomenological picture related to the topological charges to help understand the underlying physical origins of the two different phase transition mechanisms.
The electronic topology is generally related to the Berry curvature, which can induce the anomalous Hall effect in time-reversal symmetry breaking systems. Intrinsic monolayer transition metal dichalcogenides possesses two nonequivalent K and K valleys, having Berry curvatures with opposite signs, and thus vanishing anomalous Hall effect in this system. Here we report the experimental realization of asymmetrical distribution of Berry curvature in a single valley in monolayer WSe2 through applying uniaxial strain to break C3v symmetry. As a result, although the Berry curvature itself is still opposite in K and K valleys, the two valleys would contribute equally to nonzero Berry curvature dipole. Upon applying electric field, the emergent Berry curvature dipole would lead to an out-of-plane orbital magnetization, which further induces an anomalous Hall effect with a linear response to E^2, known as nonlinear Hall effect. We show the strain modulated transport properties of nonlinear Hall effect in monolayer WSe2 with moderate hole-doping by gating. The second-harmonic Hall signals show quadratic dependence on electric field, and the corresponding orbital magnetization per current density can reach as large as 60. In contrast to the conventional Rashba-Edelstein effect with in-plane spin polarization, such current-induced orbital magnetization is along the out-of-plane direction, thus promising for high-efficient electrical switching of perpendicular magnetization.
It is well established that the anomalous Hall effect that a ferromagnet displays scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. Here we show that the non-collinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is 500 per ohm per cm at 2 K and 50 per ohm per cm at room temperature. The angular dependence of the anomalous Hall effect measurements confirm that the small residual in-plane magnetic moment has no role in the observed effect. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a non-vanishing Berry curvature that arises from the chiral spin structure, and which also results in a large spin Hall effect, comparable to that of platinum. The present results pave the way to realize room temperature antiferromagnetic spintronics and spin Hall effect based data storage devices.
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher moments of Berry curvatures at the Fermi energy) can induce higher-order nonlinear anomalous Hall (NLAH) effect. Specifically, an AC Hall voltage perpendicular to the current direction emerges, where the frequency is an integer multiple of the frequency of the applied current. Importantly, by analyzing the symmetry properties of all the 3D and 2D magnetic point groups, we note that the quadrupole, hexapole and even higher Berry curvature moments can cause the leading-order frequency multiplication in certain materials. To provide concrete examples, we point out that the third-order NLAH voltage can be the leading-order Hall response in certain antiferromagnets due to Berry curvature quadrupoles, and the fourth-order NLAH voltage can be the leading response in the surface states of topological insulators induced by Berry curvature hexapoles. Our results are established by symmetry analysis, effective Hamiltonian and first-principles calculations. Other materials which support the higher-order NLAH effect are further proposed, including 2D antiferromagnets and ferromagnets, Weyl semimetals and twisted bilayer graphene near the quantum anomalous Hall phase.
One big achievement in modern condensed matter physics is the recognition of the importance of various band geometric quantities in physical effects. As prominent examples, Berry curvature and Berry curvature dipole are connected to the linear and the second-order Hall effects, respectively. Here, we show that the Berry connection polarizability (BCP) tensor, as another intrinsic band geometric quantity, plays a key role in the third-order Hall effect. Based on the extended semiclassical formalism, we develop a theory for the third-order charge transport and derive explicit formulas for the third-order conductivity. Our theory is applied to the two-dimensional (2D) Dirac model to investigate the essential features of BCP and the third-order Hall response. We further demonstrate the combination of our theory with the first-principles calculations to study a concrete material system, the monolayer FeSe. Our work establishes a foundation for the study of third-order transport effects, and reveals the third-order Hall effect as a tool for characterizing a large class of materials and for probing the BCP in band structure.