Do you want to publish a course? Click here

A 1201 s Orbital Period Detached Binary: the First Double Helium Core White Dwarf LISA Verification Binary

81   0   0.0 ( 0 )
 Added by Warren R. Brown
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a 1201 s orbital period binary, the third shortest-period detached binary known. SDSS J232230.20+050942.06 contains two He-core white dwarfs orbiting with a 27 deg inclination. Located 0.76 kpc from the Sun, the binary has an estimated LISA 4-yr signal-to-noise ratio of 40. J2322+0509 is the first He+He white dwarf LISA verification binary, a source class that is predicted to account for one-third of resolved LISA ultra-compact binary detections.



rate research

Read More

We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its $6.91, rm min$ counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISAs sensitivity. Based on its estimated distance of $d=2120^{+131}_{-115},rm pc$, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of $87pm5$ after four years. We find component masses of $M_A= 0.349^{+0.093}_{-0.074},M_odot$ and $M_B=0.384^{+0.114}_{-0.074},M_odot$, radii of $R_A=0.0308^{+0.0026}_{-0.0025},R_odot$ and $R_B = 0.0291^{+0.0032}_{-0.0024},R_odot$, and effective temperatures of $T_A=22200^{+1800}_{-1600},rm K$ and $T_B=16200^{+1200}_{-1000},rm K$. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint ($r>21 , m_{rm AB}$) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.
167 - Warren R. Brown 2017
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun and a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.
We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (< 0.2 Msun) helium-core white dwarf in a 5.6 hr orbit. To date such extremely-low mass WDs, which can have thin, stably-burning outer layers, have been modeled via poorly-constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass-transfer begins. With precise (individual precision ~1%) high-cadence (~2 s) multi-color photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WDs mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondarys effective temperature (7600+/-120 K) and cooling age (1.6-1.7 Gyr).
The Laser Interferometer Space Antenna (LISA) will provide the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical parameters of a source, LISA will be able to provide very different quality of information: for some systems LISA can test unambiguously the physical processes driving the binary evolution, for others it can simply detect a binary without allowing us to untangle the source parameters and therefore shed light on the physics at work. We also highlight that simultaneous surveys with GAIA and/or optical telescopes that are and will become available can radically improve the quality of the information that can be obtained.
SDSS 1355+0856 was identified as a hot white dwarf (WD) with a binary companion from time-resolved SDSS spectroscopy as part of the ongoing SWARMS survey. Follow-up observations with the ARC 3.5m telescope and the MMT revealed weak emission lines in the central cores of the Balmer absorption lines during some phases of the orbit, but no line emission during other phases. This can be explained if SDSS 1355+0856 is a detached WD+M dwarf binary similar to GD 448, where one of the hemispheres of the low-mass companion is irradiated by the proximity of the hot white dwarf. Based on the available data, we derive a period of 0.11438 +- 0.00006 days, a primary mass of 0.46 +- 0.01 solar masses, a secondary mass between 0.083 and 0.097 solar masses, and an inclination larger than 57 degrees. This makes SDSS 1355+0856 one of the shortest period post-common envelope WD+M dwarf binaries known, and one of only a few where the primary is likely a He-core white dwarf, which has interesting implications for our understanding of common envelope evolution and the phenomenology of cataclysmic variables. The short cooling time of the WD (25 Myr) implies that the system emerged from the common envelope phase with a period very similar to what we observe today, and was born in the period gap of cataclysmic variables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا