The PH-Pfaffian topological order has been proposed as a candidate order for the $ u=5/2$ quantum Hall effect. The PH-Pfaffian liquid is known to be the ground state in several coupled wire and coupled stripe constructions. No translationally and rotationally invariant models with the PH-Pfaffian ground state have been identified so far. By employing anyon condensation on top of a topological order, allowed in an isotropic system, we argue that the PH-Pfaffian order is possible in the presence of rotational and translational symmetries.
We calculate the electron spectral functions at the edges of the Moore-Read Pfaffian and anti-Pfaffian fractional quantum Hall states, in the clean limit. We show that their qualitative differences can be probed using momentum resolved tunneling, thus providing a method to unambiguously distinguish which one is realized in the fractional quantum Hall state observed at filling factor $ u=5/2$. We further argue that edge reconstruction, which may be less important in the first excited Landau level (LL) than in the lowest LL, can also be detected this way if present.
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) -- a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N-by-N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT.
In several recent works it has been proposed that, due to disorder, the experimentally observed nu=5/2 quantum Hall state could be microscopically composed of domains of Pfaffian order along with domains of AntiPfaffian order. We numerically examine the energetics required for forming such domains and conclude that for the parameters appropriate for recent experiments, such domains would not occur.
When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum Hall effect with a quantized conductivity at an unusual half-integer nu=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragmentation of charge and spin densities into incompressible domains. The fragmentation of the quantum Hall states could be an issue in the proposed experiments that aim to probe for non-abelian quasi-particle characteristics of the nu=5/2 quantum Hall state.
The shear viscosity is an important characterization of how a many-body system behaves like a fluid. We study the shear viscosity in a strongly interacting solvable model, consisting of coupled Sachdev-Ye-Kitaev (SYK) islands. As temperature is lowered, the model exhibits a crossover from an incoherent metal with local criticality to a marginal fermi liquid. We find that while the ratio of shear viscosity to entropy density in the marginal Fermi liquid regime satisfies a Kovtun-Son-Starinets (KSS) like bound, it can strongly violate the KSS bound in a robust temperature range of the incoherent metal regime, implying a nearly perfect fluidity of the coupled local critical SYK model. Furthermore, this model also provides the first translationally invariant example violating the KSS bound with known gauge-gravity correspondence.