No Arabic abstract
The shear viscosity is an important characterization of how a many-body system behaves like a fluid. We study the shear viscosity in a strongly interacting solvable model, consisting of coupled Sachdev-Ye-Kitaev (SYK) islands. As temperature is lowered, the model exhibits a crossover from an incoherent metal with local criticality to a marginal fermi liquid. We find that while the ratio of shear viscosity to entropy density in the marginal Fermi liquid regime satisfies a Kovtun-Son-Starinets (KSS) like bound, it can strongly violate the KSS bound in a robust temperature range of the incoherent metal regime, implying a nearly perfect fluidity of the coupled local critical SYK model. Furthermore, this model also provides the first translationally invariant example violating the KSS bound with known gauge-gravity correspondence.
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mass and charge of the bulk fermion field, we found three different phase structures when we change the values of total charge density at zero temperature. In one of the three cases, our confined solution (called soliton star) is always stable and this solution approaches to the electron star away from the tip. In both the second and third case, we find a confinement/deconfinement phase transition. Moreover, in the third one, there is a strong indication that the soliton star decays into an inhomogeneous solution. We also analyze the probe fermion equations (in the WKB approximation) in the background of this soliton star geometry to confirm the presence of many fermi-surfaces in the system.
In recent work we showed that, for a class of conformal field theories (CFT) with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, $eta/s$, could violate the conjectured Kovtun-Starinets-Son viscosity bound, $eta/sgeq1/4pi$. In this paper we argue, in the context of the same model, that tuning $eta/s$ below $(16/25)(1/4pi)$ induces microcausality violation in the CFT, rendering the theory inconsistent. This is a concrete example in which inconsistency of a theory and a lower bound on viscosity are correlated, supporting the idea of a possible universal lower bound on $eta/s$ for all consistent theories.
From the partition function for two classes of classically non-local actions containing the fractional Laplacian, we show that as long as there exists a suitable (non-local) Hilbert-space transform the underlying action can be mapped onto a purely local theory. In all such cases the partition function is equivalent to that of a local theory and an area law for the entanglement entropy obtains. When such a reduction fails, the entanglement entropy deviates strongly from an area law and can in some cases scale as the volume. As these two criteria are coincident, we conjecture that they are equivalent and provide the ultimate test for locality of Gaussian theories rather than a simple inspection of the explicit operator content.
Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet gravity, which has special properties that allow us to compute the shear viscosity nonperturbatively in the Gauss-Bonnet coupling. By tuning of the coupling, the value of the shear viscosity to entropy density ratio can be adjusted to any positive value from infinity down to zero, thus violating the conjectured viscosity bound. At linear order in the coupling, we also check consistency of four different methods to calculate the shear viscosity, and we find that all of them agree. We search for possible pathologies associated with this class of theories violating the viscosity bound.
Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from interactions at the Fermi surface. In this work, we use this observation to compute the density response and collective behaviour in these systems. Compared to the Fermi liquid case, we find that the boundaries of the particle-hole continuum are blurred by incoherent contributions. However, there is a region inside this continuum, that we call inner core, within which salient features of the Fermi liquid case are preserved. A particularly striking prediction of our work is that these systems support a plasmonic collective excitation which is well-defined at large momenta, has an approximately linear dispersion relation and is located in the low-energy tail of the particle-hole continuum. Furthermore, the dynamic screening potential shows deep attractive regions as a function of the distance at higher frequencies which might lead to long-lived pair formation depending on the behaviour of the pair susceptibility. We also find that Friedel oscillations are present in these systems but are highly suppressed.