No Arabic abstract
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model. It assumes that there is no recovery. In that case the dynamical equations can be solved analytically and the result is extended to describe the D-function that depends on three parameters that we can fit to the data. Results for the data from Spain, Italy and China are presented. The model is validated by comparing with the data of deaths in China, which are well described. This allows to make predictions for the development of the disease in Spain and Italy.
Redlining is the discriminatory practice whereby institutions avoided investment in certain neighborhoods due to their demographics. Here we explore the lasting impacts of redlining on the spread of COVID-19 in New York City (NYC). Using data available through the Home Mortgage Disclosure Act, we construct a redlining index for each NYC census tract via a multi-level logistical model. We compare this redlining index with the COVID-19 statistics for each NYC Zip Code Tabulation Area. Accurate mappings of the pandemic would aid the identification of the most vulnerable areas and permit the most effective allocation of medical resources, while reducing ethnic health disparities.
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compartmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
We consider a global (location independent) model of pandemic growth which generalizes the SIR model to accommodate important features of the COVID-19 pandemic, notably the implementation of pandemic reduction measures. This SHIR model is applied to COVID-19 data, and shows promise as a simple, tractable formalism with few parameters that can be used to model pandemic case numbers. As an example we show that the average time dependence of new COVID-19 cases per day from 15 Central and Western European countries is in good agreement with the analytic, parameter-free prediction of the model
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic with the confirmed infectious cases not having peaked, the SEIQRDP model is first parameterized on data for Germany, Italy, and South Korea - countries for which the number of infectious cases are well past their peaks. Good fits are achieved with reasonable predictions of where the number of COVID-19 confirmed cases, deaths, and recovered cases will end up and by when. South African data for the period from 23 March to 8 May 2020 is then used to obtain SEIQRDP model parameters. It is found that the model fits the initial disease progression well, but that the long-term predictive capability of the model is rather poor. The South African SEIQRDP model is subsequently recalculated with the basic reproduction number constrained to reported values. The resulting model fits the data well, and long-term predictions appear to be reasonable. The South African SEIQRDP model predicts that the peak in the number of confirmed infectious individuals will occur at the end of October 2020, and that the total number of deaths will range from about 10,000 to 90,000, with a nominal value of about 22,000. All of these predictions are heavily dependent on the disease control measures in place, and the adherence to these measures. These predictions are further shown to be particularly sensitive to parameters used to determine the basic reproduction number. The future aim is to use a feedback control approach together with the South African SEIQRDP model to determine the epidemiological impact of varying lockdown levels proposed by the South African Government.
We present a compartmental meta-population model for the spread of Covid-19 in India. Our model simulates populations at a district or state level using an epidemiological model that is appropriate to Covid-19. Different districts are connected by a transportation matrix developed using available census data. We introduce uncertainties in the testing rates into the model that takes into account the disparate responses of the different states to the epidemic and also factors in the state of the public healthcare system. Our model allows us to generate qualitative projections of Covid-19 spread in India, and further allows us to investigate the effects of different proposed interventions. By building in heterogeneity at geographical and infrastructural levels and in local responses, our model aims to capture some of the complexity of epidemiological modeling appropriate to a diverse country such as India.