Do you want to publish a course? Click here

Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets

73   0   0.0 ( 0 )
 Added by Manuel Amthor
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce blueprint separable convolutions (BSConv) as highly efficient building blocks for CNNs. They are motivated by quantitative analyses of kernel properties from trained models, which show the dominance of correlations along the depth axis. Based on our findings, we formulate a theoretical foundation from which we derive efficient implementations using only standard layers. Moreover, our approach provides a thorough theoretical derivation, interpretation, and justification for the application of depthwise separable convolutions (DSCs) in general, which have become the basis of many modern network architectures. Ultimately, we reveal that DSC-based architectures such as MobileNets implicitly rely on cross-kernel correlations, while our BSConv formulation is based on intra-kernel correlations and thus allows for a more efficient separation of regular convolutions. Extensive experiments on large-scale and fine-grained classification datasets show that BSConvs clearly and consistently improve MobileNets and other DSC-based architectures without introducing any further complexity. For fine-grained datasets, we achieve an improvement of up to 13.7 percentage points. In addition, if used as drop-in replacement for standard architectures such as ResNets, BSConv variants also outperform their vanilla counterparts by up to 9.5 percentage points on ImageNet. Code and models are available under https://github.com/zeiss-microscopy/BSConv.



rate research

Read More

234 - Tse-Wei Chen , Wei Tao , Deyu Wang 2021
In order to handle modern convolutional neural networks (CNNs) efficiently, a hardware architecture of CNN inference accelerator is proposed to handle depthwise convolutions and regular convolutions, which are both essential building blocks for embedded-computer-vision algorithms. Different from related works, the proposed architecture can support filter kernels with different sizes with high flexibility since it does not require extra costs for intra-kernel parallelism, and it can generate convolution results faster than the architecture of the related works. The experimental results show the importance of supporting depthwise convolutions and dilated convolutions with the proposed hardware architecture. In addition to depthwise convolutions with large-kernels, a new structure called DDC layer, which includes the combination of depthwise convolutions and dilated convolutions, is also analyzed in this paper. For face detection, the computational costs decrease by 30%, and the model size decreases by 20% when the DDC layers are applied to the network. For image classification, the accuracy is increased by 1% by simply replacing $3 times 3$ filters with $5 times 5$ filters in depthwise convolutions.
Very deep convolutional neural networks (CNNs) have been firmly established as the primary methods for many computer vision tasks. However, most state-of-the-art CNNs are large, which results in high inference latency. Recently, depth-wise separable convolution has been proposed for image recognition tasks on computationally limited platforms such as robotics and self-driving cars. Though it is much faster than its counterpart, regular convolution, accuracy is sacrificed. In this paper, we propose a novel decomposition approach based on SVD, namely depth-wise decomposition, for expanding regular convolutions into depthwise separable convolutions while maintaining high accuracy. We show our approach can be further generalized to the multi-channel and multi-layer cases, based on Generalized Singular Value Decomposition (GSVD) [59]. We conduct thorough experiments with the latest ShuffleNet V2 model [47] on both random synthesized dataset and a large-scale image recognition dataset: ImageNet [10]. Our approach outperforms channel decomposition [73] on all datasets. More importantly, our approach improves the Top-1 accuracy of ShuffleNet V2 by ~2%.
We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our approach is a time-depth separable convolution block which dramatically reduces the number of parameters in the model while keeping the receptive field large. We also give a stable and efficient beam search inference procedure which allows us to effectively integrate a language model. Coupled with a convolutional language model, our time-depth separable convolution architecture improves by more than 22% relative WER over the best previously reported sequence-to-sequence results on the noisy LibriSpeech test set.
80 - Nicolas Le Roux 2016
The standard approach to supervised classification involves the minimization of a log-loss as an upper bound to the classification error. While this is a tight bound early on in the optimization, it overemphasizes the influence of incorrectly classified examples far from the decision boundary. Updating the upper bound during the optimization leads to improved classification rates while transforming the learning into a sequence of minimization problems. In addition, in the context where the classifier is part of a larger system, this modification makes it possible to link the performance of the classifier to that of the whole system, allowing the seamless introduction of external constraints.
How to improve the efficiency of routing procedures in CapsNets has been studied a lot. However, the efficiency of capsule convolutions has largely been neglected. Capsule convolution, which uses capsules rather than neurons as the basic computation unit, makes it incompatible with current deep learning frameworks optimization solution. As a result, capsule convolutions are usually very slow with these frameworks. We observe that capsule convolutions can be considered as the operations of `multiplication of multiple small matrics plus tensor-based combination. Based on this observation, we develop two acceleration schemes with CUDA APIs and test them on a custom CapsNet. The result shows that our solution achieves a 4X acceleration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا