No Arabic abstract
Here, we study the role of stress state and stress gradient in whisker growth in Sn coatings electrodeposited on brass. The bulk stress in Sn coatings was measured using a laser-optics based curvature setup, whereas glancing angle X-ray diffraction was employed to quantify the surface stress; this also allowed studying role of out-of-plane stress gradient in whisker growth. Both bulk stress and surface stress in Sn coating evolved with time, wherein both were compressive immediately after the deposition, and thereafter while the bulk stress monotonically became more compressive and subsequently saturated with aging at room temperature, the stress near the surface of the Sn coating continually became more tensile with aging. These opposing evolutionary behaviors of bulk and surface stresses readily established a negative out-of-plane stress gradient, required for spontaneous growth of whiskers. The importance of out-of-plane stress gradient was also validated by externally imposing widely different stress states and stress gradients in Sn coatings using a 3-point bending apparatus. It was consistently observed that whisker growth was more in the coatings under external tensile stress, however, with higher negative out-of-plane stress gradient. The results conclusively indicate the critical role of negative out-of-plane stress gradient on whisker growth, as compared to only the nature (i.e., sign and magnitude) of stress.
Strain engineering is the art of inducing controlled lattice distortions in a material to modify specific physicochemical properties. Strain engineering is applied for basic fundamental studies of physics and chemistry of solids but also for device fabrication through the development of materials with new functionalities. Thin films are one of the most important tools for strain engineering. Thin films can in fact develop large strain due to the crystalline constrains at the interface with the substrate and/or as the result of specific morphological features that can be selected by an appropriate tuning of the deposition parameters. Within this context, the in situ measurement of the substrate curvature is a powerful diagnostic tool allowing a real time monitoring of the stress state of the growing film. This manuscript reviews a few recent applications of this technique and presents new measurements that point out the great potentials of the substrate curvature measurement in strain engineering. Our study also shows how, due to the high sensitivity of the technique, the correct interpretation of the results can be in certain cases not trivial and require complementary characterizations and an accurate knowledge of the physicochemical properties of the materials under investigation.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maximum referred to as stress overshoot. This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress $sigma_text{M}$ and strain $gamma_text{M}$ that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon start-up of shear from the local flow behavior to the global rheological observables.
The measurement of the Si lattice parameter by x-ray interferometry assumes the use of strain-free crystals, which might not be true because of intrinsic stresses due to surface relaxation, reconstruction, and oxidation. We used x-ray phase-contrast topography to investigate the strain sensitivity to the finishing, annealing, and coating of the interferometer crystals.We assessed the topography capabilities by measuring the lattice strain due to films of copper deposited on the interferometer mirror-crystal. A byproduct has been the measurement of the surface stresses after complete relaxation of the coatings.
Understanding the nature and behavior of vacancy-like defects in epitaxial GeSn metastable alloys is crucial to elucidate the structural and optoelectronic properties of these emerging semiconductors. The formation of vacancies and their complexes is expected to be promoted by the relatively low substrate temperature required for the epitaxial growth of GeSn layers with Sn contents significantly above the equilibrium solubility of 1 at.%. These defects can impact both the microstructure and charge carrier lifetime. Herein, to identify the vacancy-related complexes and probe their evolution as a function of Sn content, depth-profiled pulsed low-energy positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy were combined to investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range. The samples were grown by chemical vapor deposition method at temperatures between 300 and 330 {deg}C. Regardless of the Sn content, all GeSn samples showed the same depth-dependent increase in the positron annihilation line broadening parameters, which confirmed the presence of open volume defects. The measured average positron lifetimes were the highest (380-395 ps) in the region near the surface and monotonically decrease across the analyzed thickness, but remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps higher than the Ge reference layers. Surprisingly, these lifetimes were found to decrease as Sn content increases in GeSn layers. These measurements indicate that divacancies are the dominant defect in the as-grown GeSn layers. However, their corresponding lifetime was found to be shorter than in epitaxial Ge thus suggesting that the presence of Sn may alter the structure of divacancies. Additionally, GeSn layers were found to also contain a small fraction of vacancy clusters, which become less important as Sn content increases.
Transition metal nitrides have recently gained attention in the fields of plasmonics, plasmon-enhanced photocatalysis, photothermal applications, and nonlinear optics because of their suitable optical properties, refractory nature, and large laser damage thresholds. This work reports comparative studies of the transient response of films of titanium nitride, zirconium nitride, and Au under femtosecond excitation. Broadband transient optical characterization helps to adjudicate earlier, somewhat inconsistent reports regarding hot electron lifetimes based upon single wavelength measurements. These pump-probe experiments show sub-picosecond transient dynamics only within the epsilon-near-zero window of the refractory metals. The dynamics are dominated by photoinduced interband transitions resulting from ultrafast electron energy redistribution. The enhanced reflection modulation in the epsilon-near-zero window makes it possible to observe the ultrafast optical response of these films at low pump fluences. These results indicate that electron-phonon coupling in TiN and ZrN is 25-100 times greater than in Au. Strong electron-phonon coupling drives the sub-picosecond optical response and facilitates greater lattice heating compared to Au, making TiN and ZrN promising for photothermal applications. The spectral response and dynamics of TiN and ZrN are only weakly sensitive to pump fluence and pump excitation energy. However, the magnitude of the response is much greater at higher pump photon energies and higher fluences, reaching peak observed values of 15 % in TiN and 50 % in ZrN in the epsilon-near-zero window.