Do you want to publish a course? Click here

Poisson structure on character varieties

45   0   0.0 ( 0 )
 Added by Indranil Biswas
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We show that the character variety for a $n$-punctured oriented surface has a natural Poisson structure.



rate research

Read More

We explore induced mappings between character varieties by mappings between surfaces. It is shown that these mappings are generally Poisson. We also explicitly calculate the Poisson bi-vector in a new case.
Let $M$ be an exact symplectic manifold with $c_1(M)=0$. Denote by $mathrm{Fuk}(M)$ the Fukaya category of $M$. We show that the dual space of the bar construction of $mathrm{Fuk}(M)$ has a differential graded noncommutative Poisson structure. As a corollary we get a Lie algebra structure on the cyclic cohomology $mathrm{HC}^bullet(mathrm{Fuk}(M))$, which is analogous to the ones discovered by Kontsevich in noncommutative symplectic geometry and by Chas and Sullivan in string topology.
We prove a conjecture of Etingof and the second author for hypertoric varieties, that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices to symplectic leaves. The Poisson-de Rham homology of a Poisson cone inherits a second grading. In the hypertoric case, we compute the resulting 2-variable Poisson-de Rham-Poincare polynomial, and prove that it is equal to a specialization of an enrichment of the Tutte polynomial of a matroid that was introduced by Denham. We also compute this polynomial for S3-varieties of type A in terms of Kostka polynomials, modulo a previous conjecture of the first author, and we give a conjectural answer for nilpotent cones in arbitrary type, which we prove in rank less than or equal to 2.
Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the free group of m+n generators in G (respectively, K) such that for each i between 1 and m, the image of the i-th free generator is conjugate to h_i. These spaces are parabolic analogues of character varieties of free groups. We prove that Y is a strong deformation retraction of X. In particular, X and Y are homotopy equivalent. We also describe explicit examples relating X to relative character varieties.
In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call nodefolds. This construction is valid for any algebraic group $G$, in any dimension and also in the parabolic setting. In particular, this TQFT allow us to compute the virtual classes of representation varieties over complex singular planar curves. In addition, in the case $G = mathrm{SL}_{2}(k)$, the virtual class of the associated character variety over a nodal closed orientable surface is computed both in the non-parabolic and in the parabolic scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا