No Arabic abstract
We present a novel approach called Optimized Directed Roadmap Graph (ODRM). It is a method to build a directed roadmap graph that allows for collision avoidance in multi-robot navigation. This is a highly relevant problem, for example for industrial autonomous guided vehicles. The core idea of ODRM is, that a directed roadmap can encode inherent properties of the environment which are useful when agents have to avoid each other in that same environment. Like Probabilistic Roadmaps (PRMs), ODRMs first step is generating samples from C-space. In a second step, ODRM optimizes vertex positions and edge directions by Stochastic Gradient Descent (SGD). This leads to emergent properties like edges parallel to walls and patterns similar to two-lane streets or roundabouts. Agents can then navigate on this graph by searching their path independently and solving occurring agent-agent collisions at run-time. Using the graphs generated by ODRM compared to a non-optimized graph significantly fewer agent-agent collisions happen. We evaluate our roadmap with both, centralized and decentralized planners. Our experiments show that with ODRM even a simple centralized planner can solve problems with high numbers of agents that other multi-agent planners can not solve. Additionally, we use simulated robots with decentralized planners and online collision avoidance to show how agents are a lot faster on our roadmap than on standard grid maps.
Learning communication via deep reinforcement learning (RL) or imitation learning (IL) has recently been shown to be an effective way to solve Multi-Agent Path Finding (MAPF). However, existing communication based MAPF solvers focus on broadcast communication, where an agent broadcasts its message to all other or predefined agents. It is not only impractical but also leads to redundant information that could even impair the multi-agent cooperation. A succinct communication scheme should learn which information is relevant and influential to each agents decision making process. To address this problem, we consider a request-reply scenario and propose Decision Causal Communication (DCC), a simple yet efficient model to enable agents to select neighbors to conduct communication during both training and execution. Specifically, a neighbor is determined as relevant and influential only when the presence of this neighbor causes the decision adjustment on the central agent. This judgment is learned only based on agents local observation and thus suitable for decentralized execution to handle large scale problems. Empirical evaluation in obstacle-rich environment indicates the high success rate with low communication overhead of our method.
Reward decomposition is a critical problem in centralized training with decentralized execution~(CTDE) paradigm for multi-agent reinforcement learning. To take full advantage of global information, which exploits the states from all agents and the related environment for decomposing Q values into individual credits, we propose a general meta-learning-based Mixing Network with Meta Policy Gradient~(MNMPG) framework to distill the global hierarchy for delicate reward decomposition. The excitation signal for learning global hierarchy is deduced from the episode reward difference between before and after exercise updates through the utility network. Our method is generally applicable to the CTDE method using a monotonic mixing network. Experiments on the StarCraft II micromanagement benchmark demonstrate that our method just with a simple utility network is able to outperform the current state-of-the-art MARL algorithms on 4 of 5 super hard scenarios. Better performance can be further achieved when combined with a role-based utility network.
We discuss the problem of learning collaborative behaviour through communication in multi-agent systems using deep reinforcement learning. A connectivity-driven communication (CDC) algorithm is proposed to address three key aspects: what agents to involve in the communication, what information content to share, and how often to share it. The multi-agent system is modelled as a weighted graph with nodes representing agents. The unknown edge weights reflect the degree of communication between pairs of agents, which depends on a diffusion process on the graph - the heat kernel. An optimal communication strategy, tightly coupled with overall graph topology, is learned end-to-end concurrently with the agents policy so as to maximise future expected returns. Empirical results show that CDC is capable of superior performance over alternative algorithms for a range of cooperative navigation tasks, and that the learned graph structures can be interpretable.
We study the performance of the gradient play algorithm for multi-agent tabular Markov decision processes (MDPs), which are also known as stochastic games (SGs), where each agent tries to maximize its own total discounted reward by making decisions independently based on current state information which is shared between agents. Policies are directly parameterized by the probability of choosing a certain action at a given state. We show that Nash equilibria (NEs) and first order stationary policies are equivalent in this setting, and give a non-asymptotic global convergence rate analysis to an $epsilon$-NE for a subclass of multi-agent MDPs called Markov potential games, which includes the cooperative setting with identical rewards among agents as an important special case. Our result shows that the number of iterations to reach an $epsilon$-NE scales linearly, instead of exponentially, with the number of agents. Local geometry and local stability are also considered. For Markov potential games, we prove that strict NEs are local maxima of the total potential function and fully-mixed NEs are saddle points. We also give a local convergence rate around strict NEs for more general settings.
In this work, we present MADRaS, an open-source multi-agent driving simulator for use in the design and evaluation of motion planning algorithms for autonomous driving. MADRaS provides a platform for constructing a wide variety of highway and track driving scenarios where multiple driving agents can train for motion planning tasks using reinforcement learning and other machine learning algorithms. MADRaS is built on TORCS, an open-source car-racing simulator. TORCS offers a variety of cars with different dynamic properties and driving tracks with different geometries and surface properties. MADRaS inherits these functionalities from TORCS and introduces support for multi-agent training, inter-vehicular communication, noisy observations, stochastic actions, and custom traffic cars whose behaviours can be programmed to simulate challenging traffic conditions encountered in the real world. MADRaS can be used to create driving tasks whose complexities can be tuned along eight axes in well-defined steps. This makes it particularly suited for curriculum and continual learning. MADRaS is lightweight and it provides a convenient OpenAI Gym interface for independent control of each car. Apart from the primitive steering-acceleration-brake control mode of TORCS, MADRaS offers a hierarchical track-position -- speed control that can potentially be used to achieve better generalization. MADRaS uses multiprocessing to run each agent as a parallel process for efficiency and integrates well with popular reinforcement learning libraries like RLLib.