The principal aim of this paper is to extend Birmans sequence of integral inequalities originally obtained in 1961, and containing Hardys and Rellichs inequality as special cases, to a sequence of inequalities that incorporates power weights on either side and logarithmic refinements on the right-hand side of the inequality as well. Our new technique of proof for this sequence of inequalities relies on a combination of transforms originally due to Hartman and Muller-Pfeiffer. The results obtained considerably improve on prior results in the literature.
We revisit weighted Hardy-type inequalities employing an elementary ad hoc approach that yields explicit constants. We also discuss the infinite sequence of power weighted Birman-Hardy-Rellich-type inequalities and derive an operator-valued version thereof.
We study the two-weighted estimate [ bigg|sum_{k=0}^na_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg|leq c|f|L_{p,u}(0,infty)|,tag{$*$} ] where the functions $a_k(x)$ are not assumed to be positive. It is shown that for $1<pleq qleqinfty$, provided that the weight $u$ satisfies the certain conditions, the estimate $(*)$ holds if and only if the estimate [ sum_{k=0}^nbigg|a_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg| leq c|f|L_{p,u}(0,infty)|.tag{$**$} ] is fulfilled. The necessary and sufficient conditions for $(**)$ to be valid are well-known. The obtained result can be applied to the estimates of differential operators with variable coefficients in some weighted Sobolev spaces.
We find sharp conditions on the growth of a rooted regular metric tree such that the Neumann Laplacian on the tree satisfies a Hardy inequality. In particular, we consider homogeneous metric trees. Moreover, we show that a non-trivial Aharonov-Bohm magnetic field leads to a Hardy inequality on a loop graph.
This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.
In this paper, the authors prove the boundedness of commutators generated by the weighted Hardy operator on weighted $lambda$-central Morrey space with the weight $omega$ satisfying the doubling condition. Moreover, the authors give the characterization for the weighted $lambda$-central Campanato space by introducing a new kind of operator which is related to the commutator of weighted Hardy operator.
Fritz Gesztesy
,Lance L. Littlejohn
,Isaac Michael
.
(2020)
.
"A Sequence of Weighted Birman-Hardy-Rellich Inequalities with Logarithmic Refinements"
.
Fritz Gesztesy
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا