Do you want to publish a course? Click here

A Graph to Graphs Framework for Retrosynthesis Prediction

75   0   0.0 ( 0 )
 Added by Chence Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule, a.k.a. retrosynthesis prediction. Existing state-of-the-art methods rely on matching the target molecule with a large set of reaction templates, which are very computationally expensive and also suffer from the problem of coverage. In this paper, we propose a novel template-free approach called G2Gs by transforming a target molecular graph into a set of reactant molecular graphs. G2Gs first splits the target molecular graph into a set of synthons by identifying the reaction centers, and then translates the synthons to the final reactant graphs via a variational graph translation framework. Experimental results show that G2Gs significantly outperforms existing template-free approaches by up to 63% in terms of the top-1 accuracy and achieves a performance close to that of state-of-the-art template based approaches, but does not require domain knowledge and is much more scalable.



rate research

Read More

Retrosynthesis prediction is a fundamental problem in organic synthesis, where the task is to identify precursor molecules that can be used to synthesize a target molecule. A key consideration in building neural models for this task is aligning model design with strategies adopted by chemists. Building on this viewpoint, this paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction. The model first predicts the set of graph edits transforming the target into incomplete molecules called synthons. Next, the model learns to expand synthons into complete molecules by attaching relevant leaving groups. This decomposition simplifies the architecture, making its predictions more interpretable, and also amenable to manual correction. Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
Retrosynthesis is one of the fundamental problems in organic chemistry. The task is to identify reactants that can be used to synthesize a specified product molecule. Recently, computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities. Most existing approaches rely on template-based models that define subgraph matching rules, but whether or not a chemical reaction can proceed is not defined by hard decision rules. In this work, we propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks that learns when rules from reaction templates should be applied, implicitly considering whether the resulting reaction would be both chemically feasible and strategic. We also propose an efficient hierarchical sampling to alleviate the computation cost. While achieving a significant improvement of $8.1%$ over current state-of-the-art methods on the benchmark dataset, our model also offers interpretations for the prediction.
Several works based on Generative Adversarial Networks (GAN) have been recently proposed to predict a set of medical images from a single modality (e.g, FLAIR MRI from T1 MRI). However, such frameworks are primarily designed to operate on images, limiting their generalizability to non-Euclidean geometric data such as brain graphs. While a growing number of connectomic studies has demonstrated the promise of including brain graphs for diagnosing neurological disorders, no geometric deep learning work was designed for multiple target brain graphs prediction from a source brain graph. Despite the momentum the field of graph generation has gained in the last two years, existing works have two critical drawbacks. First, the bulk of such works aims to learn one model for each target domain to generate from a source domain. Thus, they have a limited scalability in jointly predicting multiple target domains. Second, they merely consider the global topological scale of a graph (i.e., graph connectivity structure) and overlook the local topology at the node scale of a graph (e.g., how central a node is in the graph). To meet these challenges, we introduce MultiGraphGAN architecture, which not only predicts multiple brain graphs from a single brain graph but also preserves the topological structure of each target graph to predict. Its three core contributions lie in: (i) designing a graph adversarial auto-encoder for jointly predicting brain graphs from a single one, (ii) handling the mode collapse problem of GAN by clustering the encoded source graphs and proposing a cluster-specific decoder, (iii) introducing a topological loss to force the reconstruction of topologically sound target brain graphs. Our MultiGraphGAN significantly outperformed its variants thereby showing its great potential in multi-view brain graph generation from a single graph.
379 - Xuanqing Liu , Si Si , Xiaojin Zhu 2019
In this paper, we proposed a general framework for data poisoning attacks to graph-based semi-supervised learning (G-SSL). In this framework, we first unify different tasks, goals, and constraints into a single formula for data poisoning attack in G-SSL, then we propose two specialized algorithms to efficiently solve two important cases --- poisoning regression tasks under $ell_2$-norm constraint and classification tasks under $ell_0$-norm constraint. In the former case, we transform it into a non-convex trust region problem and show that our gradient-based algorithm with delicate initialization and update scheme finds the (globally) optimal perturbation. For the latter case, although it is an NP-hard integer programming problem, we propose a probabilistic solver that works much better than the classical greedy method. Lastly, we test our framework on real datasets and evaluate the robustness of G-SSL algorithms. For instance, on the MNIST binary classification problem (50000 training data with 50 labeled), flipping two labeled data is enough to make the model perform like random guess (around 50% error).
Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا