Do you want to publish a course? Click here

The influence of high-energy local orbitals and electron-phonon interactions on the band gaps and optical spectra of hexagonal boron nitride

88   0   0.0 ( 0 )
 Added by Tong Shen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report $ab$ $initio$ band diagram and optical absorption spectra of hexagonal boron nitride ($h$-BN), focusing on unravelling how the completeness of basis set for $GW$ calculations and how electron-phonon interactions (EPIs) impact on them. The completeness of basis set, an issue which was seldom discussed in previous optical spectra calculations of $h$-BN, is found crucial in providing converged quasiparticle band gaps. In the comparison among three different codes, we demonstrate that by including high-energy local orbitals in the all-electron linearized augmented plane waves based $GW$ calculations, the quasiparticle direct and fundamental indirect band gaps are widened by $sim$0.2 eV, giving values of 6.81 eV and 6.25 eV respectively at the $GW_0$ level. EPIs, on the other hand, reduce them to 6.62 eV and 6.03 eV respectively at 0 K, and 6.60 eV and 5.98 eV respectively at 300 K. With clamped crystal structure, the first peak of the absorption spectrum is at 6.07 eV, originating from the direct exciton contributed by electron transitions around $K$ in the Brillouin zone. After including the EPIs-renormalized quasiparticles in the Bethe-Salpeter equation, the exciton-phonon coupling shifts the first peak to 5.83 eV at 300 K, lower than the experimental value of $sim$6.00 eV. This accuracy is acceptable to an $ab$ $initio$ description of excited states with no fitting parameter.



rate research

Read More

Hexagonal Boron Nitride (hBN) mono and multilayers are promising hosts for room temperature single photon emitters (SPEs). In this work we explore high energy (~ MeV) electron irradiation as a means to generate stable SPEs in hBN. We investigate four types of exfoliated hBN flakes - namely, high purity multilayers, isotopically pure hBN, carbon rich hBN multilayers and monolayered material - and find that electron irradiation increases emitter concentrations dramatically in all samples. Furthermore, the engineered emitters are located throughout hBN flakes (not only at flake edges or grain boundaries), and do not require activation by high temperature annealing of the host material after electron exposure. Our results provide important insights into controlled formation of hBN SPEs and may aid in identification of their crystallographic origin.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations.
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with those obtained for the corresponding layered structures, i.e. the graphene and hexagonal BN sheets. In particular, we focus on the role of depolarization effects, anisotropies and interactions in the excited states. We show that already the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to which extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization such as optical and fluorescence spectroscopies as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride has already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hexagonal boron nitride would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hexagonal boron nitride exhibit thermal conductivity of up to 20 W/mK, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine-tuning its thermal properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا