Do you want to publish a course? Click here

Weakly-Supervised Action Localization by Generative Attention Modeling

114   0   0.0 ( 0 )
 Added by Baifeng Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Weakly-supervised temporal action localization is a problem of learning an action localization model with only video-level action labeling available. The general framework largely relies on the classification activation, which employs an attention model to identify the action-related frames and then categorizes them into different classes. Such method results in the action-context confusion issue: context frames near action clips tend to be recognized as action frames themselves, since they are closely related to the specific classes. To solve the problem, in this paper we propose to model the class-agnostic frame-wise probability conditioned on the frame attention using conditional Variational Auto-Encoder (VAE). With the observation that the context exhibits notable difference from the action at representation level, a probabilistic model, i.e., conditional VAE, is learned to model the likelihood of each frame given the attention. By maximizing the conditional probability with respect to the attention, the action and non-action frames are well separated. Experiments on THUMOS14 and ActivityNet1.2 demonstrate advantage of our method and effectiveness in handling action-context confusion problem. Code is now available on GitHub.



rate research

Read More

Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.
Weakly-supervised temporal action localization aims to localize action instances temporal boundary and identify the corresponding action category with only video-level labels. Traditional methods mainly focus on foreground and background frames separation with only a single attention branch and class activation sequence. However, we argue that apart from the distinctive foreground and background frames there are plenty of semantically ambiguous action context frames. It does not make sense to group those context frames to the same background class since they are semantically related to a specific action category. Consequently, it is challenging to suppress action context frames with only a single class activation sequence. To address this issue, in this paper, we propose an action-context modeling network termed ACM-Net, which integrates a three-branch attention module to measure the likelihood of each temporal point being action instance, context, or non-action background, simultaneously. Then based on the obtained three-branch attention values, we construct three-branch class activation sequences to represent the action instances, contexts, and non-action backgrounds, individually. To evaluate the effectiveness of our ACM-Net, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-1.3. The experiments show that our method can outperform current state-of-the-art methods, and even achieve comparable performance with fully-supervised methods. Code can be found at https://github.com/ispc-lab/ACM-Net
Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background category, it is difficult for the network to separate foreground and background, resulting in poor detection performance. In this report, we present our 2021 HACS Challenge - Weakly-supervised Learning Track solution that based on BaSNet to address above problem. Specifically, we first adopt pre-trained CSN, Slowfast, TDN, and ViViT as feature extractors to get feature sequences. Then our proposed Local-Global Background Modeling Network (LGBM-Net) is trained to localize instances by using only video-level labels based on Multi-Instance Learning (MIL). Finally, we ensemble multiple models to get the final detection results and reach 22.45% mAP on the test set
258 - Zheng Shou , Hang Gao , Lei Zhang 2018
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak supervision, namely only video-level annotations are available during training). However, the state-of-the-art weakly-supervised TAL methods only focus on generating good Class Activation Sequence (CAS) over time but conduct simple thresholding on CAS to localize actions. In this paper, we first develop a novel weakly-supervised TAL framework called AutoLoc to directly predict the temporal boundary of each action instance. We propose a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the needed segment-level supervision for training such a boundary predictor. Our method achieves dramatically improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. It is also very encouraging to see that our weakly-supervised method achieves comparable results with some fully-supervised methods.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the models robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا