Do you want to publish a course? Click here

The MESAS Project: ALMA observations of the F-type stars $gamma$ Lep, $gamma$ Vir A, and $gamma$ Vir B

79   0   0.0 ( 0 )
 Added by Jacob White
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spectrum of stars in the submillimeter to centimeter wavelength range remains poorly constrained due to a lack of data for most spectral types. An accurate characterization of stellar emission in this regime is needed to test stellar atmosphere models, and is also essential for revealing emission associated with unresolved circumstellar debris. We present ALMA observations of the three nearby, main-sequence, debris-poor, F-type stars $gamma$ Lep, $gamma$ Vir A, and $gamma$ Vir B at 0.87 and 1.29 millimeters. We use these data to constrain semi-empirical atmospheric models. We discuss the atmospheric structure of these stars, explore potential short term variability, and the potential impact on debris disk studies. These results are part of an ongoing campaign to obtain long wavelength observations of debris-poor stars, entitled Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter wavelengths (MESAS).



rate research

Read More

Modeling the submillimeter to centimeter emission of stars is challenging due to a lack of sensitive observations at these long wavelengths. We launched an ongoing campaign to obtain new observations entitled Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter wavelengths (MESAS). Here we present ALMA, GBT, and VLA observations of Sirius A, the closest main-sequence A-type star, that span from 1.4 to 9.0 millimeters. These observations complement our previous millimeter data on Sirius A and are entirely consistent with the PHOENIX stellar atmosphere models constructed to explain them. We note that accurate models of long wavelength emission from stars are essential not only to understand fundamental stellar processes, but also to determine the presence of dusty debris in spatially unresolved observations of circumstellar disks.
254 - S.-B. Qian , L.-Y. Zhu , Z.-B. Dai 2011
We report here the tentative discovery of a Jovian planet in orbit around the rapidly pulsating subdwarf B-type (sdB-type) eclipsing binary NY Vir. By using new determined eclipse times together with those collected from the literature, we detect that the observed-calculated (O-C) curve of NY Vir shows a small-amplitude cyclic variation with a period of 7.9,years and a semiamplitude of 6.1,s, while it undergoes a downward parabolic change (revealing a period decrease at a rate of $dot{P}=-9.2times{10^{-12}}$). The periodic variation was analyzed for the light-travel time effect via the presence of a third body. The mass of the tertiary companion was determined to be $M_3sin{i^{prime}}=2.3(pm0.3)$,$M_{Jupiter}$ when a total mass of 0.60,$M_{odot}$ for NY Vir is adopted. This suggests that it is most probably a giant circumbinary planet orbiting NY Vir at a distance of about 3.3 astronomical units (AU). Since the rate of period decrease can not be explained by true angular momentum loss caused by gravitational radiation or/and magnetic braking, the observed downward parabolic change in the O-C diagram may be only a part of a long-period (longer than 15 years) cyclic variation, which may reveal the presence of another Jovian planet ($sim2.5$$M_{Jupiter}$) in the system.
After the discovery of V391 Peg b, the first planet detected around a post Red Giant phase star (Silvotti et al. 2007), the EXOTIME (EXOplanet search with the TIming MEthod) project is focused on the search for new planets with similar characteristics. The aim of the project is to organize a global observing network to collect as much data as possible for a sample of five subdwarf B (sdB) stars and share them in order to obtain a more precise analysis. These evolved pulsators may have extremely regular oscillation periods. This feature makes these stars suitable to search for planetary companions with the timing method as in the case of pulsars. In this contribution we present the project and some preliminary results for the star PG 1325+101 (QQ Vir) after the first two years of activity.
A decade of surveys has hinted at a possible higher occurrence rate of debris discs in systems hosting low mass planets. This could be due to common favourable forming conditions for rocky planets close in and planetesimals at large radii. In this paper we present the first resolved millimetre study of the debris disc in the 4.6 Gyr old multiplanet system 61 Vir, combining ALMA and JCMT data at 0.86 mm. We fit the data using a parametric disc model, finding that the disc of planetesimals extends from 30 AU to at least 150 AU, with a surface density distribution of millimetre sized grains with a power law slope of 0.1$^{+1.1}_{-0.8}$. We also present a numerical collisional model that can predict the evolution of the surface density of millimetre grains for a given primordial disc, finding that it does not necessarily have the same radial profile as the total mass surface density (as previous studies suggested for the optical depth), with the former being flatter. Finally, we find that if the planetesimal disc was stirred at 150 AU by an additional unseen planet, that planet should be more massive than 10 M$_{oplus}$ and lie between 10-20 AU. Lower planet masses and semi-major axes down to 4 AU are possible for eccentricities $gg$ 0.1.
94 - B. Rousseau 2019
Data acquired at Ceres by the visible channel of the Visible and InfraRed mapping spectrometer (VIR) on board the NASA Dawn spacecraft are affected by the temperatures of both the visible (VIS) and the infrared (IR) sensors, which are respectively a CCD and a HgCdTe array. The variations of the visible channel temperatures measured during the sessions of acquisitions are correlated with variations in the spectral slope and shape for all the mission phases. The infrared channel (IR) temperature is more stable during the acquisitions, nonetheless it is characterized by a bi-modal distribution whether the cryocooler (and therefore the IR channel) is used or not during the visible channel operations. When the infrared channel temperature is high (175K, i.e. not in use and with crycooler off), an additional negative slope and a distortion are observed in the spectra of the visible channel. We developed an empirical correction based on a reference spectrum for the whole data set; it is designed to correct the two issues related to the sensor temperatures that we have identified. The reference spectrum is calculated to be representative of the global Ceres surface. It is also made of data acquired when the visible and infrared channel temperatures are equal to the ones measured during an observation of the Arcturus star by VIR, which is consistent with several ground-based observations. The developed correction allows reliable analysis and mapping to be performed by minimizing the artifacts induced by fluctuations of the VIS temperature. Thanks to this correction, a direct comparison between different mission phases during which VIR experienced different visible and infrared channel temperatures is now possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا