Do you want to publish a course? Click here

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications

71   0   0.0 ( 0 )
 Added by Kaiping Zheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In high stakes applications such as healthcare and finance analytics, the interpretability of predictive models is required and necessary for domain practitioners to trust the predictions. Traditional machine learning models, e.g., logistic regression (LR), are easy to interpret in nature. However, many of these models aggregate time-series data without considering the temporal correlations and variations. Therefore, their performance cannot match up to recurrent neural network (RNN) based models, which are nonetheless difficult to interpret. In this paper, we propose a general framework TRACER to facilitate accurate and interpretable predictions, with a novel model TITV devised for healthcare analytics and other high stakes applications such as financial investment and risk management. Different from LR and other existing RNN-based models, TITV is designed to capture both the time-invariant and the time-variant feature importance using a feature-wise transformation subnetwork and a self-attention subnetwork, for the feature influence shared over the entire time series and the time-related importance respectively. Healthcare analytics is adopted as a driving use case, and we note that the proposed TRACER is also applicable to other domains, e.g., fintech. We evaluate the accuracy of TRACER extensively in two real-world hospital datasets, and our doctors/clinicians further validate the interpretability of TRACER in both the patient level and the feature level. Besides, TRACER is also validated in a high stakes financial application and a critical temperature forecasting application. The experimental results confirm that TRACER facilitates both accurate and interpretable analytics for high stakes applications.



rate research

Read More

107 - Wonjun Ko , Eunjin Jeon , 2020
In this work, we formulate the problem of estimating and selecting task-relevant temporal signal segments from a single EEG trial in the form of a Markov decision process and propose a novel reinforcement-learning mechanism that can be combined with the existing deep-learning based BCI methods. To be specific, we devise an actor-critic network such that an agent can determine which timepoints need to be used (informative) or discarded (uninformative) in composing the intention-related features in a given trial, and thus enhancing the intention identification performance. To validate the effectiveness of our proposed method, we conducted experiments with a publicly available big MI dataset and applied our novel mechanism to various recent deep-learning architectures designed for MI classification. Based on the exhaustive experiments, we observed that our proposed method helped achieve statistically significant improvements in performance.
Cardiovascular disorders account for nearly 1 in 3 deaths in the United States. Care for these disorders are often determined during visits to acute care facilities, such as hospitals. While the length of stay in these settings represents just a small proportion of patients lives, they account for a disproportionately large amount of decision making. To overcome this bias towards data from acute care settings, there is a need for longitudinal monitoring in patients with cardiovascular disorders. Longitudinal monitoring can provide a more comprehensive picture of patient health, allowing for more informed decision making. This work surveys the current field of sensing technologies and machine learning analytics that exist in the field of remote monitoring for cardiovascular disorders. We highlight three primary needs in the design of new smart health technologies: 1) the need for sensing technology that can track longitudinal trends in signs and symptoms of the cardiovascular disorder despite potentially infrequent, noisy, or missing data measurements; 2) the need for new analytic techniques that model data captured in a longitudinal, continual fashion to aid in the development of new risk prediction techniques and in tracking disease progression; and 3) the need for machine learning techniques that are personalized and interpretable, allowing for advancements in shared clinical decision making. We highlight these needs based upon the current state-of-the-art in smart health technologies and analytics and discuss the ample opportunities that exist in addressing all three needs in the development of smart health technologies and analytics applied to the field of cardiovascular disorders and care.
For hourly PM2.5 concentration prediction, accurately capturing the data patterns of external factors that affect PM2.5 concentration changes, and constructing a forecasting model is one of efficient means to improve forecasting accuracy. In this study, a novel hybrid forecasting model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and deep temporal convolutional neural network (DeepTCN) is developed to predict PM2.5 concentration, by modelling the data patterns of historical pollutant concentrations data, meteorological data, and discrete time variables data. Taking PM2.5 concentration of Beijing as the sample, experimental results showed that the forecasting accuracy of the proposed CEEMDAN-DeepTCN model is verified to be the highest when compared with the time series model, artificial neural network, and the popular deep learning models. The new model has improved the capability to model the PM2.5-related factor data patterns, and can be used as a promising tool for forecasting PM2.5 concentrations.
Understanding and tuning the performance of extreme-scale parallel computing systems demands a streaming approach due to the computational cost of applying offline algorithms to vast amounts of performance log data. Analyzing large streaming data is challenging because the rate of receiving data and limited time to comprehend data make it difficult for the analysts to sufficiently examine the data without missing important changes or patterns. To support streaming data analysis, we introduce a visual analytic framework comprising of three modules: data management, analysis, and interactive visualization. The data management module collects various computing and communication performance metrics from the monitored system using streaming data processing techniques and feeds the data to the other two modules. The analysis module automatically identifies important changes and patterns at the required latency. In particular, we introduce a set of online and progressive analysis methods for not only controlling the computational costs but also helping analysts better follow the critical aspects of the analysis results. Finally, the interactive visualization module provides the analysts with a coherent view of the changes and patterns in the continuously captured performance data. Through a multi-faceted case study on performance analysis of parallel discrete-event simulation, we demonstrate the effectiveness of our framework for identifying bottlenecks and locating outliers.
Accurate vehicle localization is a crucial step towards building effective Vehicle-to-Vehicle networks and automotive applications. Yet standard grade GPS data, such as that provided by mobile phones, is often noisy and exhibits significant localization errors in many urban areas. Approaches for accurate localization from imagery often rely on structure-based techniques, and thus are limited in scale and are expensive to compute. In this paper, we present a scalable visual localization approach geared for real-time performance. We propose a hybrid coarse-to-fine approach that leverages visual and GPS location cues. Our solution uses a self-supervised approach to learn a compact road image representation. This representation enables efficient visual retrieval and provides coarse localization cues, which are fused with vehicle ego-motion to obtain high accuracy location estimates. As a benchmark to evaluate the performance of our visual localization approach, we introduce a new large-scale driving dataset based on video and GPS data obtained from a large-scale network of connected dash-cams. Our experiments confirm that our approach is highly effective in challenging urban environments, reducing localization error by an order of magnitude.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا