Do you want to publish a course? Click here

Demonstration of Muon-Beam Transverse Phase-Space Compression

255   0   0.0 ( 0 )
 Added by Ivana Belosevic
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate efficient transverse compression of a 12.5 MeV/c muon beam stopped in a helium gas target featuring a vertical density gradient and crossed electric and magnetic fields. The muon stop distribution extending vertically over 14 mm was reduced to a 0.25 mm size (RMS) within 3.5 $mu$s. The simulation including cross sections for low-energy $mu^+$-$text{He}$ elastic and charge exchange ($mu^+leftrightarrow $ muonium) collisions describes the measurements well. By combining the transverse compression stage with a previously demonstrated longitudinal compression stage, we can improve the phase space density of a $mu^+ $ beam by a factor of $ 10^{10} $ with $ 10^{-3} $ efficiency.



rate research

Read More

Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.
A 10 MeV/c $mu^+$ beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon swarm has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 $mu$s. This paves the way for preparation of a high quality muon beam.
121 - C. M. Bhat 2015
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
Coulomb interaction between charged particles is a well-known phenomenon in many areas of researches. In general the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron beam based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
119 - A. Romanov 2018
FAST linear accelerator has been commissioned in 2017. Experimental program of the facility requires high quality beams with well-defined properties. Solenoidal fields at photoinjector, laser spot shape, space charge forces and other effects can distort beam distribution and introduce coupling. This work presents results of a beam phase space tomography for a coupled 4D case. Beam was rotated in two planes with seven quads by 180 degrees and images from YaG screen were used to perform SVD based reconstruction of the beam distribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا