Do you want to publish a course? Click here

Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale

69   0   0.0 ( 0 )
 Added by Sachin Dev Verma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman micro-spectroscopy, which is used for in-situ verification of the chemical identity in the 100 - 2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy allowing for the study of ultrafast transport properties down to the nanometer length scale.

rate research

Read More

Two-dimensional Ruddlesden-Popper hybrid lead halide perovskites have become a major topic in perovskite optoelectronics. Here, we aim to unravel the ultrafast dynamics governing the evolution of charge carriers and excitons in these materials. Using a combination of ultrabroadband time-resolved THz (TRTS) and fluorescence upconversion spectroscopies, we find that sequential carrier cooling and exciton formation best explain the observed dynamics, where exciton-exciton interactions play an important role in the form of Auger heating and biexciton formation. We show that the presence of a longer-lived population of carriers is due to these processes and not to a Mott transition. Therefore, excitons still dominate at laser excitation densities. We use kinetic modeling to compare the phenethylammonium and butylammonium organic cations while investigating the stability of the resulting films. In addition, we demonstrate the capability of using ultrabroadband TRTS to study excitons in large binding energy semiconductors through spectral analysis at room temperature.
The impact of uni-axial compressive and tensile strain and diameter on the electronic band structure of indium arsenide (InAs) nanowires (NWs) is investigated using first principles calculations. Effective masses and band gaps are extracted from the electronic structure for relaxed and strained nanowires. Material properties are extracted and applied to determine charge transport through the NWs described within the effective mass approximation and by applying the non-equilibrium Greens function method. The transport calculations self-consistently solve the Schrodinger equation with open boundary conditions and Poissons equation for the electrostatics. The device structure corresponds to a metal oxide semiconductor field effect transistor (MOSFET) with an InAs NW channel in a gate-all-around geometry. The channel cross sections are for highly scaled devices within a range of 3x3 nm2 to 1x1 nm2. Strain effects on the band structures and electrical performance are evaluated for different NW orientations and diameters by quantifying subthreshold swing and ON/OFF current ratio. Our results reveal for InAs NW transistors with critical dimensions of a few nanometer, the crystallographic orientation and quantum confinement effects dominate device behavior, nonetheless strain effects must be included to provide accurate predictions of transistor performance.
We investigate the effect of hypersonic (> 1 GHz) acoustic phonon wavepackets on electron transport in a semiconductor superlattice. Our quantum mechanical simulations demonstrate that a GHz train of picosecond deformation strain pulses propagating through a superlattice can generate current oscillations whose frequency is several times higher than that of the strain pulse train. The shape and polarity of the calculated current pulses agree well with experimentally measured electric signals. The calculations also explain and accurately reproduce the measured variation of the induced current pulse magnitude with the strain pulse amplitude and applied bias voltage. Our results open a route to developing acoustically-driven semiconductor superlattices as sources of millimetre and sub-millimetre electromagnetic waves.
We describe a theoretical approach for spin-polarized hot-electron transport, as it occurs after excitation by ultrafast optical pulses in heterostructures formed by ferromagnetic and normal metals. We formulate a spin-dependent particle-in-cell model that solves the Boltzmann equation for excited electrons. It includes lifetimes and transmission coefficients as parameters, which can be taken from ab-initio calculations or experiment, and can be easily extended to multilayer systems. This approach is capable of describing electron transport in the ballistic, super-diffusive and diffusive regime including secondary-carrier generation. We apply the model to optically excited carriers in Fe/Au bilayers and Fe/Au/Fe spin-valve structures. We gain microscopic insight into the hot-electron transport dynamics probed in recent experiments on spin-valves. We find contributions to the demagnetization dynamics induced in Fe/Au/Fe trilayers regardless of the parallel or antiparallel magnetic alignment of the Fe layers.
We compare two transmission electron microscopy (TEM) based techniques that can provide highly spatially resolved quantitative measurements of magnetic induction fields at high sensitivity. To this end, the magnetic induction of a ferromagnetic NiFe nanowire has been measured and compared to micromagnetic modelling. State-of-the-art electron holography has been performed using the averaging of large series of holograms to improve the sensitivity of the measurements. These results are then compared those obtained from pixelated (or 4D) scanning transmission electron microscopy (STEM). This emerging technique uses a pixelated detector to image the local diffraction patterns as the beam is scanned over the sample. For each diffraction pattern, the deflection of the beam is measured and converted into magnetic induction, while scanning the beam allows to build a map. Aberration corrected Lorentz (field-free) configurations of the TEM and STEM were used for an improved spatial resolution. We show that the pixelated STEM approach, even when performed using an old generation of charge-coupled device camera, provides better sensitivity at the expense of spatial resolution. A more general comparison of the two techniques is given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا