Do you want to publish a course? Click here

Fermi liquid behavior and colossal magnetoresistance in layered MoOCl2

203   0   0.0 ( 0 )
 Added by Zhi Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A characteristic of a Fermi liquid is the T^2 dependence of its resistivity, sometimes referred to as the Baber law. However, for most metals, this behavior is only restricted to very low temperatures, usually below 20 K. Here, we experimentally demonstrate that for the single-crystal van der Waals layered material MoOCl2, the Baber law holds in a wide temperature range up to ~120 K, indicating that the electron-electron scattering plays a dominant role in this material. Combining with the specific heat measurement, we find that the modified Kadowaki-Woods ratio of the material agrees well with many other strongly correlated metals. Furthermore, in the magneto-transport measurement, a colossal magneto-resistance is observed, which reaches ~350% at 9 T and displays no sign of saturation. With the help of first-principles calculations, we attribute this behavior to the presence of open orbits on the Fermi surface. We also suggest that the dominance of electron-electron scattering is related to an incipient charge density wave state of the material. Our results establish MoOCl2 as a strongly correlated metal and shed light on the underlying physical mechanism, which may open a new path for exploring the effects of electron-electron interaction in van der Waals layered structures.



rate research

Read More

Materials with strong magnetoresistive responses are the backbone of spintronic technology, magnetic sensors, and hard drives. Among them, manganese oxides with a mixed valence and a cubic perovskite structure stand out due to their colossal magnetoresistance (CMR). A double exchange interaction underlies the CMR in manganates, whereby charge transport is enhanced when the spins on neighboring Mn3+ and Mn4+ ions are parallel. Prior efforts to find different materials or mechanisms for CMR resulted in a much smaller effect. Here we show an enormous CMR at low temperatures in EuCd2P2 without manganese, oxygen, mixed valence, or cubic perovskite structure. EuCd2P2 has a layered trigonal lattice and exhibits antiferromagnetic ordering at 11 K. The magnitude of CMR (104 percent) in as-grown crystals of EuCd2P2 rivals the magnitude in optimized thin films of manganates. Our magnetization, transport, and synchrotron X-ray data suggest that strong magnetic fluctuations are responsible for this phenomenon. The realization of CMR at low temperatures without heterovalency leads to a new regime for materials and technologies related to antiferromagnetic spintronics.
140 - Y. M. Xie , Z. R. Yang , L. Li 2012
The correlation between colossal magnetocapacitance (CMC) and colossal magnetoresistance (CMR) in CdCr2S4 system has been revealed. The CMC is induced in polycrystalline Cd0.97In0.03Cr2S4 by annealing in cadmium vapor. At the same time, an insulator-metal transition and a concomitant CMR are observed near the Curie temperature. In contrast, after the same annealing treatment, CdCr2S4 displays a typical semiconductor behavior and does not show magnetic field dependent dielectric and electric transport properties. The simultaneous occurrence or absence of CMC and CMR effects implies that the CMC in the annealed Cd0.97In0.03Cr2S4 could be explained qualitatively by a combination of CMR and Maxwell-Wagner effect.
Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal-insulator transition and has inspired extensive studies for decadescite{Ramirez1997, Tokura2006}. Here we demonstrate an analogous spin effect near the Neel temperature $T_{rm{N}}$=296 K of the antiferromagnetic insulator CrO. Using a yttrium iron garnet YIG/CrO/Pt trilayer, we injected a spin current from the YIG into the CrO layer, and collected via the inverse spin Hall effect the signal transmitted in the heavy metal Pt. We observed a change by two orders of magnitude in the transmitted spin current within 14 K of the Neel temperature. This transition between spin conducting and nonconducting states could be also modulated by a magnetic field in isothermal conditions. This effect, that we term spin colossal magnetoresistance (SCMR), has the potential to simplify the design of fundamental spintronics components, for instance enabling the realization of spin current switches or spin-current based memories.
Angle-resolved photoemission spectroscopy data for the bilayer manganite La1.2Sr1.8Mn2O7 show that, upon lowering the temperature below the Curie point, a coherent polaronic metallic groundstate emerges very rapidly with well defined quasiparticles which track remarkably well the electrical conductivity, consistent with macroscopic transport properties. Our data suggest that the mechanism leading to the insulator-to-metal transition in La1.2Sr1.8Mn2O7 can be regarded as a polaron coherence condensation process acting in concert with the Double Exchange interaction.
Searching for novel antiferromagnetic materials with large magnetotransport response is highly demanded for constructing future spintronic devices with high stability, fast switching speed, and high density. Here we report a colossal anisotropic magnetoresistance effect in an antiferromagnetic binary compound with layered structure rare-earth dichalcogenide EuTe2. The AMR reaches 40000%, which is 4 orders of magnitude larger than that in conventional antiferromagnetic alloys. Combined magnetization, resistivity, and theoretical analysis reveal that the colossal AMR effect is attributed to a novel mechanism of vector-field tunable band structure, rather than the conventional spin-orbit coupling mechanism. Moreover, it is revealed that the strong hybridization between orbitals of Eu-layer with localized spin and Te-layer with itinerant carriers is extremely important for the large AMR effect. Our results suggest a new direction towards exploring AFM materials with prominent magnetotransport properties, which creates an unprecedented opportunity for AFM spintronics applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا