Do you want to publish a course? Click here

Observation of an Unusual Colossal Anisotropic Magnetoresistance Effect in an Antiferromagnetic Semiconductor

148   0   0.0 ( 0 )
 Added by Zhicheng Zhong
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Searching for novel antiferromagnetic materials with large magnetotransport response is highly demanded for constructing future spintronic devices with high stability, fast switching speed, and high density. Here we report a colossal anisotropic magnetoresistance effect in an antiferromagnetic binary compound with layered structure rare-earth dichalcogenide EuTe2. The AMR reaches 40000%, which is 4 orders of magnitude larger than that in conventional antiferromagnetic alloys. Combined magnetization, resistivity, and theoretical analysis reveal that the colossal AMR effect is attributed to a novel mechanism of vector-field tunable band structure, rather than the conventional spin-orbit coupling mechanism. Moreover, it is revealed that the strong hybridization between orbitals of Eu-layer with localized spin and Te-layer with itinerant carriers is extremely important for the large AMR effect. Our results suggest a new direction towards exploring AFM materials with prominent magnetotransport properties, which creates an unprecedented opportunity for AFM spintronics applications.

rate research

Read More

Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal-insulator transition and has inspired extensive studies for decadescite{Ramirez1997, Tokura2006}. Here we demonstrate an analogous spin effect near the Neel temperature $T_{rm{N}}$=296 K of the antiferromagnetic insulator CrO. Using a yttrium iron garnet YIG/CrO/Pt trilayer, we injected a spin current from the YIG into the CrO layer, and collected via the inverse spin Hall effect the signal transmitted in the heavy metal Pt. We observed a change by two orders of magnitude in the transmitted spin current within 14 K of the Neel temperature. This transition between spin conducting and nonconducting states could be also modulated by a magnetic field in isothermal conditions. This effect, that we term spin colossal magnetoresistance (SCMR), has the potential to simplify the design of fundamental spintronics components, for instance enabling the realization of spin current switches or spin-current based memories.
420 - X. Marti , I. Fina , Di Yi 2013
Lord Kelvin with his discovery of the anisotropic magnetoresistance (AMR) phenomenon in Ni and Fe was 70 years ahead of the formulation of relativistic quantum mechanics the effect stems from, and almost one and a half century ahead of spintronics whose first commercial applications relied on the AMR. Despite the long history and importance in magnetic sensing and memory technologies, the microscopic understanding of the AMR has struggled to go far beyond the basic notion of a relativistic magnetotransport phenomenon arising from combined effects on diffusing carriers of spin-orbit coupling and broken symmetry of a metallic ferromagnet. Our work demonstrates that even this seemingly generic notion of the AMR phenomenon needs revisiting as we observe the ohmic AMR effect in a nano-scale film of an antiferromagnetic (AFM) semiconductor Sr2IrO4 (SIO). Our work opens the recently proposed path for integrating semiconducting and spintronic technologies in AFMs. SIO is a particularly favorable material for exploring this path since its semiconducting nature is entangled with the AFM order and strong spin-orbit coupling. For the observation of the low-field Ohmic AMR in SIO we prepared an epitaxial heterostructure comprising a nano-scale SIO film on top of an epilayer of a FM metal La2/3Sr1/3MnO3 (LSMO). This allows the magnetic field control of the orientation of AFM spins in SIO via the exchange spring effect at the FM-AFM interface.
117 - Yang Ji , J. Miao , K. K. Meng 2018
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resistances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
A common perception assumes that magnetic memories require ferromagnetic materials with a non-zero net magnetic moment. However, it has been recently proposed that compensated antiferromagnets with a zero net moment may represent a viable alternative to ferromagnets. So far, experimental research has focused on bistable memories in antiferromagnetic metals. In the present work we demonstrate a multiple-stable memory device in epitaxial manganese telluride (MnTe) which is an antiferromagnetic counterpart of common II-VI semiconductors. Favorable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the applied magnetic field, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states which we set by heat-assisted magneto-recording and by changing the angle of the writing field. We explore the dependence of the magnitude of the zero-field read-out signal on the strength of the writing field and demonstrate the robustness of the antiferromagnetic memory states against strong magnetic field perturbations. We ascribe the multiple-stability in our antiferromagnetic memory to different distributions of domains with the Neel vector aligned along one of the three $c$-plane magnetic easy axes in the hexagonal MnTe film. The domain redistribution is controlled during the heat-assisted recording by the strength and angle of the writing field and freezes when sufficiently below the Neel temperature.
Here we investigate antiferromagnetic Eu$_{5}$In$_{2}$Sb$_{6}$, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu$_{5}$In$_{2}$Sb$_{6}$ is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From {it ab initio} calculations, the paramagnetic state of Eu$_{5}$In$_{2}$Sb$_{6}$ is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke-Johnson potential. Notably, GGA+U calculations suggest that the antiferromagnetic phase of Eu$_{5}$In$_{2}$Sb$_{6}$ may host an axion insulating state. Our results provide important feedback for theories of topological classification and highlight the potential of realizing clean magnetic narrow-gap semiconductors in Zintl materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا