No Arabic abstract
We present a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium, where quantum corrections to the classical field approximation are systematically included by a renormalization of the classical field parameters. Our semiclassical approximation is reliable in the limit of weak interactions and high temperatures. As a specific example, we apply our method to the interacting Bose gas and study experimentally observable quantities, such as correlation functions of bosonic fields and the full counting statistics of the number of particles in an interval. Where possible, our method is checked against exact results derived from integrability, showing excellent agreement.
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of integrability of Hamiltonians; TMI can be negative or positive for both integrable and non-integrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by non-integrability. Furthermore, we calculate TMI in disordered systems such as many-body localized (MBL) systems and the Sachdev-Ye-Kitaev (SYK) model. We find that scrambling occurs but is slow in a MBL phase, while disorder in the SYK model does not make scrambling slower but makes it smoother.
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marked by maxima of the typical fidelity susceptibilities that scale with the square of the inverse average level spacing, saturating their upper bound, and that the strength of the integrability/localization breaking perturbation at these maxima decreases with increasing system size. We also show that the spectral function below the Thouless energy (in the quantum-chaotic regime) diverges when approaching those maxima. Our results suggest that, in the thermodynamic limit, arbitrarily small integrability/localization breaking perturbations result in quantum chaos in the many-body quantum systems studied here.
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be accounted for by considering correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly { accessible to experiments when correlating measurable properties}. When non-vanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite emph{quantum coherence length}, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system -- as it remains finite even when the correlation length of the system diverges at finite temperature -- and it unveils the unique spatial structure of quantum correlations.