Do you want to publish a course? Click here

A White-light Flare Powered by Magnetic Reconnection in the Lower Solar Atmosphere

66   0   0.0 ( 0 )
 Added by Yongliang Song
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

White-light flares (WLFs), first observed in 1859, refer to a type of solar flares showing an obvious enhancement of the visible continuum emission. This type of enhancement often occurs in most energetic flares, and is usually interpreted as a consequence of efficient heating in the lower solar atmosphere through non-thermal electrons propagating downward from the energy release site in the corona. However, this coronal-reconnection model has difficulty in explaining the recently discovered small WLFs. Here we report a C2.3 white-light flare, which are associated with several observational phenomena: fast decrease in opposite-polarity photospheric magnetic fluxes, disappearance of two adjacent pores, significant heating of the lower chromosphere, negligible increase of hard X-ray flux, and an associated U-shaped magnetic field configuration. All these suggest that this white-light flare is powered by magnetic reconnection in the lower part of the solar atmosphere rather than by reconnection higher up in the corona.



rate research

Read More

The presence of photospheric magnetic reconnection has long been thought to give rise to short and impulsive events, such as Ellerman bombs (EBs) and Type II spicules. In this article, we combine high-resolution, high-cadence observations from the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments at the Dunn Solar Telescope, National Solar Observatory, New Mexico with co-aligned Atmospheric Imaging Assembly (SDO/AIA) and Solar Optical Telescope (Hinode/SOT) data to observe small-scale events situated within an active region. These data are then compared with state-of-the-art numerical simulations of the lower atmosphere made using the MURaM code. It is found that brightenings, in both the observations and the simulations, of the wings of the H alpha line profile, interpreted as EBs, are often spatially correlated with increases in the intensity of the FeI 6302.5A line core. Bi-polar regions inferred from Hinode/SOT magnetic field data show evidence of flux cancellation associated, co-spatially, with these EBs, suggesting magnetic reconnection could be a driver of these high-energy events. Through the analysis of similar events in the simulated lower atmosphere, we are able to infer that line profiles analogous to the observations occur co-spatially with regions of strong opposite polarity magnetic flux. These observed events and their simulated counterparts are interpreted as evidence of photospheric magnetic reconnection at scales observable using current observational instrumentation.
We study flare processes in the lower solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manifestations of the flare energy release in the lower layers of the solar atmosphere (the photosphere and chromosphere) using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology. The NLFFF modelling reveals interaction of oppositely directed magnetic flux-tubes in the PIL. These two interacting magnetic flux tubes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of the PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to the small-scale photospheric magnetic arcade. Presented observational results evidence in favor of location of the primary energy release site in the dense chromosphere where plasma is partially ionized in the region of strong electric currents concentrated near the polarity inversion line. Magnetic reconnection may be triggered by two interacting magnetic flux tubes with forming current sheet elongated along the PIL.
The Interface Region Imaging Spectrograph(IRIS) with its high spatial and temporal resolution brings exceptional plasma diagnostics of solar chromospheric and coronal activity during magnetic reconnection. The aim of this work is to study the fine structure and dynamics of the plasma at a jet base forming a mini flare between two emerging magnetic fluxes (EMFs) observed with IRIS and the Solar Dynamics Observatory (SDO) instruments. We proceed to a spatio-temporal analysis of IRIS spectra observed in the spectral ranges of Mg II, C II, and Si IV ions. Doppler velocities from Mg II lines are computed by using a cloud model technique. Strong asymmetric Mg II and C II line profiles with extended blue wings observed at the reconnection site (jet base) are interpreted by the presence of two chromospheric temperature clouds, one explosive cloud with blueshifts at 290 km/s and one cloud with smaller Dopplershift (around 36 km/s). Simultaneously at the same location (jet base), strong emission of several transition region lines (e.g. O IV and Si IV), emission of the Mg II triplet lines of the Balmer-continuum and absorption of identified chromospheric lines in Si IV broad profiles have been observed and analysed. Such observations of IRIS line and continuum emissions allow us to propose a stratification model for the white-light mini flare atmosphere with multiple layers of different temperatures along the line of sight, in a reconnection current sheet. It is the first time that we could quantify the fast speed (possibly Alfvenic flows) of cool clouds ejected perpendicularly to the jet direction by using the cloud model technique. We conjecture that the ejected clouds come from plasma which was trapped between the two EMFs before reconnection or be caused by chromospheric-temperature (cool) upflow material like in a surge, during reconnection
We study flare processes in the solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manifestations of the flare energy release in the photosphere and chromosphere using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology and electric currents. The NLFFF modelling reveals interaction of two magnetic flux ropes with oppositely directed magnetic field in the PIL. These flux ropes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to a small-scale photospheric magnetic arcade. The observational results evidence in favor of location of the primary energy release site in the chromospheric plasma with strong electric currents concentrated near the polarity inversion line. In this case, magnetic reconnection is triggered by the interacting magnetic flux ropes forming a current sheet elongated along the PIL.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning pm172m{AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and Upsilon-ray spectra (this was the first Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا