Do you want to publish a course? Click here

Observational Investigation of Energy Release in the Lower Solar Atmosphere of a Solar Flare

145   0   0.0 ( 0 )
 Added by Ivan Sharykin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study flare processes in the lower solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manifestations of the flare energy release in the lower layers of the solar atmosphere (the photosphere and chromosphere) using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology. The NLFFF modelling reveals interaction of oppositely directed magnetic flux-tubes in the PIL. These two interacting magnetic flux tubes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of the PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to the small-scale photospheric magnetic arcade. Presented observational results evidence in favor of location of the primary energy release site in the dense chromosphere where plasma is partially ionized in the region of strong electric currents concentrated near the polarity inversion line. Magnetic reconnection may be triggered by two interacting magnetic flux tubes with forming current sheet elongated along the PIL.



rate research

Read More

We study flare processes in the solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manifestations of the flare energy release in the photosphere and chromosphere using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology and electric currents. The NLFFF modelling reveals interaction of two magnetic flux ropes with oppositely directed magnetic field in the PIL. These flux ropes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to a small-scale photospheric magnetic arcade. The observational results evidence in favor of location of the primary energy release site in the chromospheric plasma with strong electric currents concentrated near the polarity inversion line. In this case, magnetic reconnection is triggered by the interacting magnetic flux ropes forming a current sheet elongated along the PIL.
White-light flares (WLFs), first observed in 1859, refer to a type of solar flares showing an obvious enhancement of the visible continuum emission. This type of enhancement often occurs in most energetic flares, and is usually interpreted as a consequence of efficient heating in the lower solar atmosphere through non-thermal electrons propagating downward from the energy release site in the corona. However, this coronal-reconnection model has difficulty in explaining the recently discovered small WLFs. Here we report a C2.3 white-light flare, which are associated with several observational phenomena: fast decrease in opposite-polarity photospheric magnetic fluxes, disappearance of two adjacent pores, significant heating of the lower chromosphere, negligible increase of hard X-ray flux, and an associated U-shaped magnetic field configuration. All these suggest that this white-light flare is powered by magnetic reconnection in the lower part of the solar atmosphere rather than by reconnection higher up in the corona.
136 - D. B. Jess 2009
We report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfven waves produced by a torsional twist of +/-22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfven oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare which occurred in active region NOAA 10486 on November 1, 2003. Excellent set of high resolution observations made by RHESSI and TRACE provide clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by the X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. From the RHESSI observations, we conclude that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, intense HXR looptop source was observed without significant footpoint emission. More intriguingly, for a brief period the looptop source exhibited strong HXR emission with energies up to 100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the preflare and main flare. We also conclude that pre-flare activities, occurred in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament leading to solar eruptive flare and associated large-scale phenomena.
The magnetic and convective nature of the Suns photosphere provides a unique platform from which generated waves can be modelled, observed, and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated in-situ or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures, and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions. Following the Theo Murphy international scientific meeting held at Chicheley Hall during February 2020, the scientific team worked collaboratively to produce 15 independent publications for the current Special Issue, which are introduced here. Implications from the current research efforts are discussed in terms of upcoming next-generation observing and high performance computing facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا