Do you want to publish a course? Click here

CAZSL: Zero-Shot Regression for Pushing Models by Generalizing Through Context

66   0   0.0 ( 0 )
 Added by Wenyu Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Learning accurate models of the physical world is required for a lot of robotic manipulation tasks. However, during manipulation, robots are expected to interact with unknown workpieces so that building predictive models which can generalize over a number of these objects is highly desirable. In this paper, we study the problem of designing deep learning agents which can generalize their models of the physical world by building context-aware learning models. The purpose of these agents is to quickly adapt and/or generalize their notion of physics of interaction in the real world based on certain features about the interacting objects that provide different contexts to the predictive models. With this motivation, we present context-aware zero shot learning (CAZSL, pronounced as casual) models, an approach utilizing a Siamese network architecture, embedding space masking and regularization based on context variables which allows us to learn a model that can generalize to different parameters or features of the interacting objects. We test our proposed learning algorithm on the recently released Omnipush datatset that allows testing of meta-learning capabilities using low-dimensional data. Codes for CAZSL are available at https://www.merl.com/research/license/CAZSL.

rate research

Read More

Few-shot learning aims to classify unseen classes with a few training examples. While recent works have shown that standard mini-batch training with a carefully designed training strategy can improve generalization ability for unseen classes, well-known problems in deep networks such as memorizing training statistics have been less explored for few-shot learning. To tackle this issue, we propose self-augmentation that consolidates self-mix and self-distillation. Specifically, we exploit a regional dropout technique called self-mix, in which a patch of an image is substituted into other values in the same image. Then, we employ a backbone network that has auxiliary branches with its own classifier to enforce knowledge sharing. Lastly, we present a local representation learner to further exploit a few training examples for unseen classes. Experimental results show that the proposed method outperforms the state-of-the-art methods for prevalent few-shot benchmarks and improves the generalization ability.
Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training) domain and the target (deployment) domain. Unlike current policy transfer approaches, which generally limit to the usage of uninterpretable neural network representations as the transferred features, we propose to transfer concrete kinematic quantities in autonomous driving. The proposed robust-control-based (RC) generic transfer architecture, which we call RL-RC, incorporates a transferable hierarchical RL trajectory planner and a robust tracking controller based on disturbance observer (DOB). The deep RL policies trained with known nominal dynamics model are transfered directly to the target domain, DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle dynamics errors and the external disturbances such as side forces. We provide simulations validating the capability of the proposed method to achieve zero-shot transfer across multiple driving scenarios such as lane keeping, lane changing and obstacle avoidance.
Normalization techniques have proved to be a crucial ingredient of successful training in a traditional supervised learning regime. However, in the zero-shot learning (ZSL) world, these ideas have received only marginal attention. This work studies normalization in ZSL scenario from both theoretical and practical perspectives. First, we give a theoretical explanation to two popular tricks used in zero-shot learning: normalize+scale and attributes normalization and show that they help training by preserving variance during a forward pass. Next, we demonstrate that they are insufficient to normalize a deep ZSL model and propose Class Normalization (CN): a normalization scheme, which alleviates this issue both provably and in practice. Third, we show that ZSL models typically have more irregular loss surface compared to traditional classifiers and that the proposed method partially remedies this problem. Then, we test our approach on 4 standard ZSL datasets and outperform sophisticated modern SotA with a simple MLP optimized without any bells and whistles and having ~50 times faster training speed. Finally, we generalize ZSL to a broader problem -- continual ZSL, and introduce some principled metrics and rigorous baselines for this new setup. The project page is located at https://universome.github.io/class-norm.
We introduce a new RL problem where the agent is required to generalize to a previously-unseen environment characterized by a subtask graph which describes a set of subtasks and their dependencies. Unlike existing hierarchical multitask RL approaches that explicitly describe what the agent should do at a high level, our problem only describes properties of subtasks and relationships among them, which requires the agent to perform complex reasoning to find the optimal subtask to execute. To solve this problem, we propose a neural subtask graph solver (NSGS) which encodes the subtask graph using a recursive neural network embedding. To overcome the difficulty of training, we propose a novel non-parametric gradient-based policy, graph reward propagation, to pre-train our NSGS agent and further finetune it through actor-critic method. The experimental results on two 2D visual domains show that our agent can perform complex reasoning to find a near-optimal way of executing the subtask graph and generalize well to the unseen subtask graphs. In addition, we compare our agent with a Monte-Carlo tree search (MCTS) method showing that our method is much more efficient than MCTS, and the performance of NSGS can be further improved by combining it with MCTS.
Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining. Additional information can be found on our website https://bokorn.github.io/zephyr/

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا