Do you want to publish a course? Click here

Class Normalization for (Continual)? Generalized Zero-Shot Learning

86   0   0.0 ( 0 )
 Added by Ivan Skorokhodov
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Normalization techniques have proved to be a crucial ingredient of successful training in a traditional supervised learning regime. However, in the zero-shot learning (ZSL) world, these ideas have received only marginal attention. This work studies normalization in ZSL scenario from both theoretical and practical perspectives. First, we give a theoretical explanation to two popular tricks used in zero-shot learning: normalize+scale and attributes normalization and show that they help training by preserving variance during a forward pass. Next, we demonstrate that they are insufficient to normalize a deep ZSL model and propose Class Normalization (CN): a normalization scheme, which alleviates this issue both provably and in practice. Third, we show that ZSL models typically have more irregular loss surface compared to traditional classifiers and that the proposed method partially remedies this problem. Then, we test our approach on 4 standard ZSL datasets and outperform sophisticated modern SotA with a simple MLP optimized without any bells and whistles and having ~50 times faster training speed. Finally, we generalize ZSL to a broader problem -- continual ZSL, and introduce some principled metrics and rigorous baselines for this new setup. The project page is located at https://universome.github.io/class-norm.



rate research

Read More

In the process of exploring the world, the curiosity constantly drives humans to cognize new things. Supposing you are a zoologist, for a presented animal image, you can recognize it immediately if you know its class. Otherwise, you would more likely attempt to cognize it by exploiting the side-information (e.g., semantic information, etc.) you have accumulated. Inspired by this, this paper decomposes the generalized zero-shot learning (G-ZSL) task into an open set recognition (OSR) task and a zero-shot learning (ZSL) task, where OSR recognizes seen classes (if we have seen (or known) them) and rejects unseen classes (if we have never seen (or known) them before), while ZSL identifies the unseen classes rejected by the former. Simultaneously, without violating OSRs assumptions (only known class knowledge is available in training), we also first attempt to explore a new generalized open set recognition (G-OSR) by introducing the accumulated side-information from known classes to OSR. For G-ZSL, such a decomposition effectively solves the class overfitting problem with easily misclassifying unseen classes as seen classes. The problem is ubiquitous in most existing G-ZSL methods. On the other hand, for G-OSR, introducing such semantic information of known classes not only improves the recognition performance but also endows OSR with the cognitive ability of unknown classes. Specifically, a visual and semantic prototypes-jointly guided convolutional neural network (VSG-CNN) is proposed to fulfill these two tasks (G-ZSL and G-OSR) in a unified end-to-end learning framework. Extensive experiments on benchmark datasets demonstrate the advantages of our learning framework.
Zero-shot learning (ZSL) algorithms typically work by exploiting attribute correlations to be able to make predictions in unseen classes. However, these correlations do not remain intact at test time in most practical settings and the resulting change in these correlations lead to adverse effects on zero-shot learning performance. In this paper, we present a new paradigm for ZSL that: (i) utilizes the class-attribute mapping of unseen classes to estimate the change in target distribution (target shift), and (ii) propose a novel technique called grouped Adversarial Learning (gAL) to reduce negative effects of this shift. Our approach is widely applicable for several existing ZSL algorithms, including those with implicit attribute predictions. We apply the proposed technique ($g$AL) on three popular ZSL algorithms: ALE, SJE, and DEVISE, and show performance improvements on 4 popular ZSL datasets: AwA2, aPY, CUB and SUN. We obtain SOTA results on SUN and aPY datasets and achieve comparable results on AwA2.
Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the real-world dynamics where classes commonly occur at different frequencies. While it is generally understood that class imbalance harms the performance of supervised methods, limited research examines the impact of imbalance on the FSL evaluation task. Our analysis compares 10 state-of-the-art meta-learning and FSL methods on different imbalance distributions and rebalancing techniques. Our results reveal that 1) some FSL methods display a natural disposition against imbalance while most other approaches produce a performance drop by up to 17% compared to the balanced task without the appropriate mitigation; 2) contrary to popular belief, many meta-learning algorithms will not automatically learn to balance from exposure to imbalanced training tasks; 3) classical rebalancing strategies, such as random oversampling, can still be very effective, leading to state-of-the-art performances and should not be overlooked; 4) FSL methods are more robust against meta-dataset imbalance than imbalance at the task-level with a similar imbalance ratio ($rho<20$), with the effect holding even in long-tail datasets under a larger imbalance ($rho=65$).
Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missing visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا