Do you want to publish a course? Click here

Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution

105   0   0.0 ( 0 )
 Added by Yan Sun
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presence of elemental vacancies in materials is inevitable according to statistical thermodynamics, which will decide the chemical and physical properties of the investigated system. However, the controlled manipulation of vacancies for specific applications is a challenge. Here we report a facile method for creating large concentrations of S vacancies in the inert basal plane of MoS2 supported on semimetal CoMoP2. With a small applied potential, S atoms can be removed in the form of H2S due to the optimized free energy of formation. The existence of vacancies favors electron injection from the electrode to the active site by decreasing the contact resistance. As a consequence, the activity is increased by 221 % with the vacancy-rich MoS2 as electrocatalyst for hydrogen evolution reaction (HER). A small overpotential of 75 mV is needed to deliver a current density of 10 mA cm-2, which is considered among the best values achieved for MoS2. It is envisaged that this work may provide a new strategy for utilizing the semimetal phase for structuring MoS2 into a multi-functional material.



rate research

Read More

Here, we propose a two-dimensional tungsten boride (WB4) lattice, with the Gibbs free energy for the adsorption of atomic hydrogen, tending to be the ideal value of 0 eV at 3% strained state, to host a better hydrogen evolution reaction activity. Based on first-principles calculations, it is demonstrated that the multiple d-p-pi and d-p-sigma Dirac conjugations of WB4 lattice ensures its excellent electronic transport characteristics. Meanwhile, coupling with the d-orbitals of W, the p-orbitals of borophene subunits in WB4 lattice can modulate the d band center to get a good HER performance. Our results not only provide a versatile platform for hosting multiple Dirac semimetal states with a sandwich configuration, but also offer a guiding principle for discovering the relationship between intrinsic properties of the active centre and the catalytic activity of metal layer from the emerging field of low-dimensional noble-metal-free lattices.
Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping in semiconductors. Specifically, deep in-gap defect states of chalcogen vacancies have been associated with intriguing phenomena in monolayer transition metal dichalcogenides (TMDs). Here, we report the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS2 by a combination of CO-tip noncontact atomic force microscopy (nc-AFM) and scanning tunneling microscopy (STM). Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states of the vacancy provide a unique fingerprint of this defect. Direct imaging of the defect orbitals by STM and state-of-the-art GW calculations reveal that the large splitting of 252 meV between these defect states is induced by spin-orbit coupling. The controllable incorporation and potential decoration of chalcogen vacancies provide a new route to tailor the optical, catalytic and magnetic properties of TMDs.
255 - I. Felner , O. Wolf , 2013
Following our previous investigations on superconductivity in amorphous carbon (aC) based systems; we have prepared thin composite aC-W films using electron-beam induced deposition. The films did not show any sign for superconductivity above 5 K. However, local, non-percolative, superconductivity emerged at Tc = 34.4 K after treatment with sulfur at 250 C for 24 hours. The superconducting features in the magnetization curves were by far sharper compared to our previous results, and the shielding fraction increased by about an order of magnitude. Our data suggest that pairing and localized superconductivity take place in the aC-S regions, whereas phase coherence, assisted by the W inclusions, was enhanced compared to our previous samples, yet still not to the degree of achieving global phase-coherence and percolating superconductivity.
N{o}rskov and collaborators proposed a simple kinetic model to explain the volcano relation for the hydrogen evolution reaction on transition metal surfaces in such that $ j_0= k_0 f({Delta}G_H)$ where j_0 is the exchange current density, $f({Delta}G_H)$ is a function of the hydrogen adsorption free energy ${Delta}G_H$ as computed from density functional theory, and $k_0$ is a universal rate constant. Herein, focusing on the hydrogen evolution reaction in acidic medium, we revisit the original experimental data and find that the fidelity of this kinetic model can be significantly improved by invoking metal-dependence on $k_0$ such that the logarithm of $k_0$ linearly depends on the absolute value of ${Delta}G_H$. We further confirm this relationship using additional experimental data points obtained from a critical review of the available literature. Our analyses show that the new model decreases the discrepancy between calculated and experimental exchange current density values by up to four orders of magnitude. Furthermore, we show the model can be further improved using machine learning and statistical inference methods that integrate additional material properties
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired $sigma $ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا