Do you want to publish a course? Click here

Permanent charge effects on ionic flow: a numerical study of flux ratios and their bifurcation

178   0   0.0 ( 0 )
 Added by Weizhang Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ionic flow carries electrical signals for cells to communicate with each other. The permanent charge of an ion channel is a crucial protein structure for flow properties while boundary conditions play a role of the driving force. Their effects on flow properties have been analyzed via a quasi-one-dimensional Poisson-Nernst-Planck model for small and relatively large permanent charges. The analytical studies have led to the introduction of flux ratios that reflect permanent charge effects and have a universal property. The studies also show that the flux ratios have different behaviors for small and large permanent charges. However, the existing analytical techniques can reveal neither behaviors of flux ratios nor transitions between small and large permanent charges. In this work we present a numerical investigation on flux ratios to bridge between small and large permanent charges. Numerical results verify the analytical predictions for the two extremal regions. More significantly, emergence of non-trivial behaviors is detected as the permanent charge varies from small to large. In particular, saddle-node bifurcations of flux ratios are revealed, showing rich phenomena of permanent charge effects by the power of combining analytical and numerical techniques. An adaptive moving mesh finite element method is used in the numerical studies.



rate research

Read More

In this paper we consider the numerical solution of Boussinesq-Peregrine type systems by the application of the Galerkin finite element method. The structure of the Boussinesq systems is explained and certain alternative nonlinear and dispersive terms are compared. A detailed study of the convergence properties of the standard Galerkin method, using various finite element spaces on unstructured triangular grids, is presented. Along with the study of the Peregrine system, a new Boussinesq system of BBM-BBM type is derived. The new system has the same structure in its momentum equation but differs slightly in the mass conservation equation compared to the Peregrine system. Further, the finite element method applied to the new system has better convergence properties, when used for its numerical approximation. Due to the lack of analytical formulas for solitary wave solutions for the systems under consideration, a Galerkin finite element method combined with the Petviashvili iteration is proposed for the numerical generation of accurate approximations of line solitary waves. Various numerical experiments related to the propagation of solitary and periodic waves over variable bottom topography and their interaction with the boundaries of the domains are presented. We conclude that both systems have similar accuracy when approximate long waves of small amplitude while the Galerkin finite element method is more effective when applied to BBM-BBM type systems.
When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.
We present two semidiscretizations of the Camassa-Holm equation in periodic domains based on variational formulations and energy conservation. The first is a periodic version of an existing conservative multipeakon method on the real line, for which we propose efficient computation algorithms inspired by works of Camassa and collaborators. The second method, and of primary interest, is the periodic counterpart of a novel discretization of a two-component Camassa-Holm system based on variational principles in Lagrangian variables. Applying explicit ODE solvers to integrate in time, we compare the variational discretizations to existing methods over several numerical examples.
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite elements. The Newton method and the L-Scheme are employed for the linearization and the performance of these schemes is studied numerically. A special focus is set on the effects of dynamic capillarity on the transport equation.
134 - Hannes Uecker 2019
We explain the setup for using the pde2path libraries for Hopf bifurcation and continuation of branches of periodic orbits and give implementation details of the associated demo directories. See [Uecker, Comm. in Comp. Phys., 2019] for a description of the basic algorithms and the mathematical background of the examples. Additionally we explain the treatment of Hopf bifurcations in systems with continuous symmetries, including the continuation of traveling waves and rotating waves in O(2) equivariant systems as relative equilibria, the continuation of Hopf bifurcation points via extended systems, and some simple setups for the bifurcation from periodic orbits associated to critical Floquet multipliers going through +-1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا