In this work, we demonstrate post-compression of 1.2 picosecond laser pulses to 13 fs via gas-based multi-pass spectral broadening. Our results yield a single-stage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power. The employed scheme represents a route towards compact few-cycle sources driven by industrial-grade Yb:YAG lasers at high average power.
BGGSe is a newly developed nonlinear material that is attractive for ultrabroad frequency mixing and ultrashort pulse generation due to its comparably low dispersion and high damage threshold.In a first experiment, we show that a long crystal length of 2.6 mm yields a pulse energy of 21 pJ at 100 MHz with a spectral bandwidth covering 5.8 to 8.5 microns. The electric field of the carrier-envelope-phase stable pulse is directly measured with electro-optical sampling and reveals a pulse duration of 91 fs, which corresponds to sub-four optical cycles, thus confirming some of the prospects of the material for ultrashort pulse generation and mid-infrared spectroscopy.
We report on the nonlinear temporal compression of mJ energy pulses from a Ti:Sa chirped pulse amplifier system in a multipass cell filled with argon. The pulses are compressed from 30 fs down to 5.3 fs, corresponding to two optical cycles. The post-compressed beam exhibits excellent spatial quality and homogeneity. These results pave the way to robust and energy-scalable compression of Ti:Sa pulses down to the few-cycle regime.
Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, it has been shown that these limitations can be overcome in the so-called overdriven regime where ionization loss and plasma dispersion strongly modify the driving laser pulse over small distances, albeit without demonstrating IAPs. Here, we report on experiments comparing the generation of IAPs in argon and neon at 80 eV via attosecond streaking measurements. Contrasting our experimental results with numerical simulations, we conclude that IAPs in argon are generated through ionization-induced transient phase-matching gating effective over distances on the order of 100 $mu$m. We show that the decay of the intensity and blue-shift due to plasma defocussing are crucial for allowing phase-matching close to the XUV cutoff at high plasma densities. We perform simulations for different gases and wavelengths and show that the mechanism is important for the phase-matching of long-wavelength, tightly-focused laser beams in high-pressure gas targets, which are currently being employed for scaling isolated attosecond pulse generation to x-ray photon energies.
Ultrashort laser pulses that last only a few optical cycles have been transformative tools for studying and manipulating light--matter interactions. Few-cycle pulses are typically produced from high-peak-power lasers, either directly from a laser oscillator, or through nonlinear effects in bulk or fiber materials. Now, an opportunity exists to explore the few-cycle regime with the emergence of fully integrated nonlinear photonics. Here, we experimentally and numerically demonstrate how lithographically patterned waveguides can be used to generate few-cycle laser pulses from an input seed pulse. Moreover, our work explores a design principle in which lithographically varying the group-velocity dispersion in a waveguide enables the creation of highly constant-intensity supercontinuum spectra across an octave of bandwidth. An integrated source of few-cycle pulses could broaden the range of applications for ultrafast light sources, including supporting new lab-on-a-chip systems in a scalable form factor.
We report on the generation of 6.1 mJ, 3.8 fs pulses by the compression of a kHz Ti:sapphire laser in a large-aperture long hollow fiber. In order to find optimal conditions for spectral broadening at high pulse energies, we explore different parameter ranges where ionization or the Kerr effect dominates. After identifying the optimum parameter settings, large spectral broadening at high waveguide transmission is obtained. The intense 1.5-cycle pulses are used for high-harmonic generation in argon and neon.