Do you want to publish a course? Click here

Stress-driven spin-down of a viscous fluid within a spherical shell

94   0   0.0 ( 0 )
 Added by Damien Gagnier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the linear properties of the steady and axisymmetric stress-driven spin-down flow of a viscous fluid inside a spherical shell, both within the incompressible and anelastic approximations, and in the asymptotic limit of small viscosities. From boundary layer analysis, we derive an analytical geostrophic solution for the 3D incompressible steady flow, inside and outside the cylinder $mathcal{C}$ that is tangent to the inner shell. The Stewartson layer that lies on $mathcal{C}$ is composed of two nested shear layers of thickness $O(E^{2/7})$ and $O(E^{1/3})$. We derive the lowest order solution for the $E^{2/7}$-layer. A simple analysis of the $E^{1/3}$-layer laying along the tangent cylinder, reveals it to be the site of an upwelling flow of amplitude $O(E^{1/3})$. Despite its narrowness, this shear layer concentrates most of the global meridional kinetic energy of the spin-down flow. Furthermore, a stable stratification does not perturb the spin-down flow provided the Prandtl number is small enough. If this is not the case, the Stewartson layer disappears and meridional circulation is confined within the thermal layers. The scalings for the amplitude of the anelastic secondary flow have been found to be the same as for the incompressible flow in all three regions, at the lowest order. However, because the velocity no longer conforms the Taylor-Proudman theorem, its shape differs outside the tangent cylinder $mathcal{C}$, that is, where differential rotation takes place. Finally, we find the settling of the steady-state to be reached on a viscous time for the weakly, strongly and thermally unstratified incompressible flows. Large density variations relevant to astro- and geophysical systems, tend to slightly shorten the transient.



rate research

Read More

We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincare equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $sin(pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.
A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross-sectional area. The latter gives rise to a non-constant pressure gradient in the flow-wise direction and, hence, to a nonlinear flow rate--pressure drop relation (unlike the Hagen--Poiseuille law for a rigid tube). Many biofluids are non-Newtonian, and are well approximated by generalized Newtonian (say, power-law) rheological models. Consequently, we analyze the problem of steady low Reynolds number flow of a generalized Newtonian fluid through a slender elastic tube by coupling fluid lubrication theory to a structural problem posed in terms of Donnell shell theory. A perturbative approach (in the slenderness parameter) yields analytical solutions for both the flow and the deformation. Using matched asymptotics, we obtain a uniformly valid solution for the tubes radial displacement, which features both a boundary layer and a corner layer caused by localized bending near the clamped ends. In doing so, we obtain a ``generalized Hagen--Poiseuille law for soft microtubes. We benchmark the mathematical predictions against three-dimensional two-way coupled direct numerical simulations (DNS) of flow and deformation performed using the commercial computational engineering platform by ANSYS. The simulations show good agreement and establish the range of validity of the theory. Finally, we discuss the implications of the theory on the problem of the flow-induced deformation of a blood vessel, which is featured in some textbooks.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a viscous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
361 - J.D. Carter , A. Govan 2015
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakly viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
71 - Klaus D. Usadel 2017
The rotational dynamics of magnetic nano particles in rotating magnetic fields in the presence of thermal noise is studied both theoretically and by performing numerical calculations. Kinetic equations for the dynamics of particles with uniaxial magnetic anisotropy are studied and the phase lag between the rotating magnetic moment and the driving field is obtained. It is shown that for large enough anisotropy energy the magnetic moment is locked to the anisotropy axis so that the particle behaves like a rotating magnetic dipole. The corresponding rigid dipole model is analyzed both numerically by solving the appropriate Fokker-Planck equation and analytically by applying an effective field method. In the special case of a rotating magnetic field applied analytic results are obtained in perfect agreement with numerical results based on the Fokker-Planck equation. The analytic formulas derived are not restricted to small magnetic fields or low frequencies and are therefore important for applications. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا