No Arabic abstract
We report the detection of a transiting, dense Neptune planet candidate orbiting the bright ($V=8.6$) K0.5V star HD 95338. Detection of the 55-day periodic signal comes from the analysis of precision radial velocities from the Planet Finder Spectrograph on the Magellan II Telescope. Follow-up observations with HARPS also confirm the presence of the periodic signal in the combined data. HD 95338 was also observed by the Transiting Exoplanet Survey Satellite ({it TESS}) where we identify a clear single transit in the photometry. A Markov Chain Monte Carlo period search on the velocities allows strong constraints on the expected transit time, matching well the epoch calculated from tess{} data, confirming both signals describe the same companion. A joint fit model yields an absolute mass of 42.44$^{+2.22}_{-2.08} M_{oplus}$ and a radius of 3.89$^{+0.19}_{-0.20}$ $R_{oplus}$ which translates to a density of 3.98$^{+0.62}_{-0.64}$ gcm, for the planet. Given the planet mass and radius, structure models suggest it is composed of a mixture of ammonia, water, and methane. HD 95338,b is one of the most dense Neptune planets yet detected, indicating a heavy element enrichment of $sim$90% ($sim38, M_{oplus}$). This system presents a unique opportunity for future follow-up observations that can further constrain structure models of cool gas giant planets.
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC,8003-1117-1 (TOI-132). {it TESS} photometry shows transit-like dips at the level of $sim$1400 ppm occurring every $sim$2.11 days. High-precision radial velocity follow-up with HARPS confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of $sim$11.5 m s$^{-1}$, which, when combined with the stellar mass of $0.97pm0.06$ $M_{odot}$, provides a planetary mass of 22.83$^{+1.81}_{-1.80}$ $M_{oplus}$. Modeling the {it TESS} high-quality light curve returns a planet radius of 3.43$^{+0.13}_{-0.14}$ $R_{oplus}$, and therefore the planet bulk density is found to be 3.11$^{+0.44}_{-0.450}$ g cm$^{-3}$. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$%. TOI-132 b is a {it TESS} Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding the Neptune desert.
We report the discovery of the 1.008-day, ultra-short period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright ($V=7.9$) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS and CORALIE radial-velocities, we measure a precise mass of $8.8pm0.6$ $M_oplus$ for this $1.74 pm 0.05$ $R_oplus$ exoplanet, which provides enough information to constrain its bulk composition, which is similar to Earths but enriched in iron. The radius, mass and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial-velocities reveal an additional $4.78$-day signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c (TOI-141c), whose minimum mass of $19.95pm 1.4$ $M_oplus$ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an ultra-short period transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
[Abridged] We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by TESS orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period $P_{rm b}=14.3$. We use 43 ESPRESSO high-resolution spectra and broad-band photometry information to derive accurate stellar atmospheric and physical parameters of HD 5278. We exploit the TESS light curve (LC) and spectroscopic diagnostics to gauge the impact of stellar activity on the ESPRESSO RVs. We perform a joint ESPRESSO RVs + TESS LC analysis using fully Bayesian frameworks to determine the system parameters. The updated stellar parameters of HD 5278 are T$_mathrm{eff}=6203pm64$ K, $log g =4.50pm0.11$ dex, [Fe/H]=$-0.12pm0.04$ dex, M$_star=1.126_{-0.035}^{+0.036}$ M$_odot$ and R$_star=1.194_{-0.016}^{+0.017}$ R$_odot$. We determine HD 5278 bs mass and radius to be $M_{rm b} = 7.8_{-1.4}^{+1.5}$ M$_oplus$ and $R_{rm b} = 2.45pm0.05$ R$_oplus$. The derived mean density, $varrho_{rm b} = 2.9_{-0.5}^{+0.6}$ g cm$^{-3}$, is consistent with a bulk composition with a substantial ($sim30%$) water mass fraction and a gas envelope comprising $sim17%$ of the measured radius. Given the host brightness and irradiation levels, HD 5278 b is one of the best targets orbiting G-F primaries for follow-up atmospheric characterization measurements with HST and JWST. We discover a second, non-transiting companion in the system, with a period $P_{rm c}=40.87_{-0.17}^{+0.18}$ days and a minimum mass $M_{rm c}sin i_{rm c} =18.4_{-1.9}^{+1.8}$ M$_oplus$. We study emerging trends in the growing population of transiting sub-Neptunes, and provide statistical evidence for a low occurrence of close-in, $10-15$ M$_oplus$ companions around G-F primaries with $T_mathrm{eff}gtrsim5500$ K.
We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V=9.9) G9 dwarf star in a visual binary system observed by the TESS space mission in Sectors 5 and 6. We performed ground-based follow-up observations -- comprised of LCOGT transit photometry, NIRC2 adaptive optics imaging, and FIES, CORALIE, HARPS, HIRES, and PFS high-precision Doppler measurements -- and confirmed the planetary nature of the 16-day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of 5 days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421b, has an orbital period of Pb =5.19672 +- 0.00049 days, a mass of Mb = 7.17 +- 0.66 Mearth and a radius of Rb = 2.68+0.19-0.18 Rearth, whereas the outer warm Neptune, TOI-421 c, has a period of Pc =16.06819 +- 0.00035 days, a mass of Mc = 16.42+1.06-1.04 Mearth, a radius of Rc = 5.09+0.16-0.15 Rearth and a density of rho_c =0.685+0.080-0.072 g cm-3 . With its characteristics the inner planet (rho_b=2.05+0.52-0.41 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421b and TOI-421c are found to be well suitable for atmospheric characterization. Our atmospheric simulations predict significant Ly-alpha transit absorption, due to strong hydrogen escape in both planets, and the presence of detectable CH_4 in the atmosphere of TOI-421c if equilibrium chemistry is assumed.
We present a new precision radial velocity (RV) dataset that reveals multiple planets orbiting the stars in the $sim$360 AU, G2$+$G2 twin binary HD 133131AB. Our 6 years of high-resolution echelle observations from MIKE and 5 years from PFS on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43$pm$0.03 and 0.63$pm$0.15 $mathcal{M}_{rm J}$ at 1.44$pm$0.005 and 4.79$pm$0.92 AU, respectively. Additional PFS observations of HD 133131B spanning 5 years indicate the presence of one eccentric planet of minimum mass 2.50$pm$0.05 $mathcal{M}_{rm J}$ at 6.40$pm$0.59 AU, making it one of the longest period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with PFS on Magellan, demonstrating the instruments precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely $sim$9.5 Gyr) and metal-poor ([Fe/H]$sim$-0.30), and we detect a $sim$0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors $sim$0.017). This detection and analysis adds to a small but growing sample of binary twin exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long period giant planets.